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Abstract—This paper describes a new approach to object
recognition for active vision systems that integrates information
across multiple observations of an object. The approach exploits
the order relationship between successive frames to derive a clas-
sifier based on the characteristic motion of local features across
visual sweeps. This motion model reveals structural information
about the object that can be exploited for recognition. The main
contribution of this paper is a recognition system that extends
invariant local features (shape contexts) into the time domain by
integration of a motion model. Evaluations on one standardized
and one custom collected dataset from the humanoid robot in
our laboratory demonstrate that the motion model allows higher-
quality hypotheses about object categories quicker than a baseline
system that treats object views as unordered streams of images.

Index Terms—object recognition, active vision

I. INTRODUCTION

In this paper we address the topic of category-level object
recognition by active vision systems such as a robot equipped
with a camera that can be moved to different viewing positions
or a humanoid that can reach and modify the world in front of
it. Confronted with a novel object, such a system must obtain
an estimate over the object class as quickly as possible and be
able to report the best available categorization at any point in
time. The framework of maximizing recognition performance
under time constraints is a general one and has a natural
formulation in sequential Bayesian estimation.

We consider as a core requirement the ability to recognize
object categories across viewpoint and texture variations and
allow for objects without characteristic texture (for example,
objects of uniform color). A large number of household items
fall into this category and can not be distinguished by their
texture alone. Shape-based recognition systems (e.g. [5]) are
robust to such within-class texture variation but directly depend
on the performance of the edge detector at every frame.
Furthermore, object shape can be ambiguous across classes
depending on the camera viewpoint, making classification
based on a single random view inherently unreliable (see
Figure 1).

In this paper, we present a system which addresses those
challenges by accumulating evidence over a number of views
obtained by following camera trajectories over the object. One
of the core questions that we address here is what we can learn
from a series of images (that stem from an “ordered sweep”
over the object) without reverting to the full 3D structure of
that object. In particular, we look at how low-level invariant

Fig. 1. Change in object appearance across viewpoints. Above: A cup
loses its characteristic handle and approaches similarity to a cylinder (center)
and a sphere (right side). Below: A cylinder needs at least two views to be
distinguished from a sphere—both share the same top-down view.

features extracted from an object evolve over time as the
active vision camera follows a set of known trajectories. We
claim that the way an object transforms under specific camera
motions (what we refer to as “object dynamics”) allows us
to disambiguate the object class faster than treating object
views as independent observations. The fact that frames are
connected in space and time leads to the observation that
feature motion leaves a characteristic imprint of that object.
To the best of our knowledge, combining this inter-frame mo-
tion information with local feature-based matching for object
recognition has not been suggested before in the literature.

The paper contains the following contributions. First, we
develop a motion model in order to extend shape context fea-
tures ([4]) into the time domain. Our model for feature motion
is general and in principle compatible with other descriptors
that allow to establish correspondence between successive
frames such as SIFT [15]. Second, we develop a classifier
that joins information from both local feature matching and
motion matching on-line in a posterior class estimate. Finally,
we demonstrate the performance of our system on two data
sets showing that incorporating feature motion allows more
certain hypotheses about the object category faster.

The paper is structured as follows. The next section dis-
cusses related work from the object recognition literature. After
that, sections 2 and 3 describe our motion model and object
classifier in detail. Section 4 presents experimental results
before the concluding discussion in section 5.



A. Related Work

Much of the recent work in category-level object recog-
nition is designed for single object views from constrained
viewpoints. These approaches commonly combine invariant
local features with methods from statistical pattern recognition
to learn the distribution of appearance features for a particular
view of an object class (e.g. [6], [8], [9], [13]).

Work to achieve recognition from multiple viewpoints is
based on object geometry [10], global appearance [16], local
appearance features [14], or both geometry and appearance
[18]. These approaches are suited for object instance recogni-
tion but do not trivially extend to category-level recognition.

Our system uses a view-based approach to 3D object recog-
nition based on local shape context features [5]. The shape
context descriptor is robust to small variations in shape and is
used here to capture the within-class variability of the different
object categories. Storing and matching against multiple views
of the same object is a commonly used method to realize
3D object recognition and is supported by psychophysical
evidence in human object recognition [17].

In addition to classical view-based matching, we introduce
a feature motion model and associated classifier. Structure
from motion algorithms estimate a 3D model of the object
when observed across multiple images [12]. Our interest here
is instead how to combine some of the recent feature-based
object recognition schemes with motion information. Unlike
traditional optical flow algorithms [11], we compute a coarse
approximation of the 3D motion field at a select number of
points. The usefulness of motion features has recently been
demonstrated for pedestrian detection in [20].

Perhaps closest in spirit to our idea of exploiting object
motion for recognition is the work of Arbel and Ferrie in [2].
It is demonstrated that changes in velocity in the optical flow
field as the camera is moved along the view sphere reveal
structural information about the object that can be used for
recognition. Our implementation, on the other hand, joins local
feature-based matching with flow information (both direction
and magnitude) obtained at the same feature points.

Lastly, there also exists a large amount of literature on
classifying motion (motion recognition) or using motion for
recognition of higher-level behaviors (motion-based recogni-
tion). Examples are as diverse as action recognition in video
[7], sign language interpretation [19], or general gesture recog-
nition. It has to be noted that the focus of this work is different,
however. The observed change from frame to frame is due to
ego motion of the camera and the characteristic structure of
the object. Whereas we hope to detect and exploit structural
change over time (such as the handle of a cup rotating into
view) for object recognition, the work above focuses strictly
on classifying motion, analogous to making statements about
the movement of the camera rather than the object itself.

II. MOTION MODEL
A. Local Features

Shape context is a robust local feature descriptor introduced
by Belongie et al. in [5]. It is utilized to find a similarity

Fig. 2. Two frames (left and right) from two distinct trajectories over the
same object. Displayed as well is the contour motion information that links
both frames (center).

measure between a model and a (potentially deformed) target
shape. Calculation of this measure requires to establish corre-
spondence between both shapes and to assess the warping that
the model points undergo to arrive at the target shape.

The shape context algorithm represents shapes by a finite set
of N sample points from the object contour as obtained from
a standard edge extraction procedure. For reliable matching,
one associates with each point a shape context descriptor (a
log-polar histogram centered at that point) that encodes the
global layout of the shape relative to that point. At its base,
the algorithm then computes the permutation π that assigns to
every point pi on the model shape the most similar point qπ(i)
on the target shape by minimizing the total assignment cost:

H(π) =
∑
i

C(pi, qπ(i)) (1)

Here, C denotes a cost function based on the χ2 test measuring
the similarity between the respective points’ histograms.

The shape context algorithm has been shown to perform
well in scenes with low background clutter. Our system uses
background subtraction to obtain an initial segmentation of the
camera image.

B. Feature Motion

The crucial observation for the extension we present here
is that images stem from an ordered sweep over an object
rather than being sampled independently from the view sphere.
Feature change across consecutive images depends on the ego
motion of the camera and on the characteristic structure of
the object (assuming that the object is stationary during the
observation cycle). This is demonstrated in Figure 2 for two
different trajectories over the identical object. For both exam-
ples, the middle picture shows the recorded change between
the left and the right frames in the sequence.

Given an ordered set of images I1, I2, . . . , Ik from a trajec-
tory, we compute feature motion for all pairs of successive



frames, i.e., (I1, I2), (I2, I3), . . . , (Ik−1, Ik). The approach
that we pursue here to compute feature motion relies on the
local feature descriptors to establish correspondence between
both frames in each such pair.

With every image pair (Ii, Ii+1) we then associate two
vectors vi+1 and di+1 of size N (the fixed number of
points sampled from both image contours). Entries in these
vectors respectively denote the angles and magnitudes of the
displacement vectors between corresponding points in Ii and
Ii+1:

vi+1 =

 6 (p1 − π(p1))
6 (p2 − π(p2))

...

 ,di+1 =

 ||p1 − π(p1)||
||p2 − π(p2)||

...


(2)

Here, π(pi) denotes the point corresponding to pi in the second
image. For scale invariance, we normalize the magnitudes in
di+1 with the median magnitude.

We devise a cost function to compare the feature motion
obtained from two trajectories at the same point in time t.
Given two such motion patterns (v

(1)
t ,d

(1)
t ) and (v

(2)
t ,d

(2)
t ),

we incorporate cosine similarity and magnitude difference for
each of the N entries into a joint cost term.

Cosine similarity is defined as the cosine of the angle
between two corresponding entries, i.e. cos(v

(2)
t,i −v

(1)
t,i ) for all

i = 1, . . . , N and is bounded in [−1, 1]. Naturally, it assumes
its maximum for the case that the angle between both vanishes.
To assess feature motion similarity we additionally compare
the difference in displacement vector lengths |d(2)t,i −d

(1)
t,i | which

we normalize to fall into the same range [−1, 1] (the maximum
is assumed if both share the same length). If we denote these
length differences by ∆i, we can obtain a joint similarity score
as the weighted sum:

si = cos(v
(2)
t,i − v

(1)
t,i ) + wi∆i ∀i = 1, . . . , N (3)

A total similarity between both motion patterns can then be
computed as:

S =

N∑
i=1

si (4)

The rationale is that one expects similar objects to result in
similar contour motion, which is determined by both direc-
tion and magnitude of the individual displacement vectors.
In general, we want to avoid that two displacement vectors
of similar lengths but in different directions result in high
similarity scores si and discount the ∆i score based on the
size of the angle between both displacement vectors.

III. OBJECT CLASSIFICATION

In this section we join the cost term obtained as output
from the shape context algorithm together with the feature
motion cost in a classifier that predicts class membership for
the presented object.

We pursue standard Bayesian techniques to keep track of
the current posterior distribution over object classes. For every
new view, after shape matching and feature motion costs have

been obtained, we execute the following three steps to update
our class membership estimate:

Converting costs into probabilities. We use binary logistic
regression to learn one-versus-all classifiers P (Ck|xSC) and
P (Ck|xM ), denoting the probability of a particular object
class Ck given shape matching cost and feature motion cost,
respectively, for each of the k classes. During training, multiple
trajectories on the viewsphere are performed over the object
and object views, their shape contexts and motion information
recorded. We then compute cost vectors xSC and xM for pairs
in the dataset and divide the data into those of the same class
and the rest. Similarly to [21] we assign a posterior of 1 to the
distance vectors in the first group and 0 to the vectors in the
other and use maximum likelihood to determine the parameters
w of the logistic regression model:

P (Ck|x) = σ(wTx) =
1

1 + exp(−wTx)
(5)

with σ being the logistic sigmoid function. Cost vector di-
mensionality depends on the sampling size along the object
contours and is fixed to 50 in our experiments.

Joining shape matching and feature motion. In the previous
step we derived two discriminative models, P (Ck|xSC) and
P (Ck|xM ), that are now combined into a single distribution
over Ck. Our combination is based on a conditional indepen-
dence assumption between xSC and xM given the class Ck.
This is the naive Bayes assumption:

P (xSC ,xM |Ck) = P (xSC |Ck)P (xM |Ck) (6)

For the combination of models it then follows that:

P (Ck|xSC ,xM ) ∝ P (xSC ,xM |Ck)P (Ck)

= P (xSC |Ck)P (xM |Ck)P (Ck)

∝ P (Ck|xSC)P (Ck|xM )

P (Ck)
(7)

This yields a posterior distribution over the class based on
results from both feature motion comparison and shape match-
ing.

Online updates of the class distribution. To continuously
adapt the estimate of the class distribution as more views of
the object are discovered, we evaluate the naive Bayes classifier
above at every time step. Let Pi(Ck|xSC) and Pi(Ck|xM )
denote the predictions of the shape context and feature motion
models for the ith object view, respectively. Then, at time t,
we have that

Pt(Ck|xSC ,xM ) ∝
∏
i=1...t Pi(Ck|xSC)Pi(Ck|xM )

P (Ck)
(8)

which allows us to aggregate the numerator in an efficient,
recursive manner. Throughout, we assume a uniform prior over
the object classes, P (Ck).



Fig. 3. Trajectories adopted for the ETH-80 data set.

Fig. 4. The three selected instances per category from ETH-80.

IV. EXPERIMENTAL EVALUATION

A. Data Sets

ETH-80. The original ETH-80 dataset consists of eight object
categories with ten instances per category. Instances vary in
shape and texture but otherwise appear on a uniform back-
ground and roughly share the same size. Each instance comes
with 41 images that are distributed evenly over the upper view
sphere at a resolution of 256× 256 pixels.

The use-case suggested for this data set in [3] is leave-
one-out cross-validation. Since we operate on object sweeps
instead of single images, we initially have to introduce an
order over the included images to simulate camera trajectories.
Unfortunately, the images taken across the view sphere do not
stem from smooth, curvilinear camera paths but instead from
equally spaced points on an octahedron approximation to the
sphere. In Figure 3 we show the approximate trajectories we
adopted for the dataset, resulting in four trajectories overall
(two as shown and two for the backside of the sphere).

The resulting image assortment for all four trajectories is
visualized for a cup example in Figure 5. As shown, each
trajectory results in a unique sweep of either eight or six
images.

Our entire training set consists of the first three instances
per object class from the ETH-80 data, resulting in a total
number of 672 images. Prototypical views for each instance
are shown in Figure 4. Note, that being a shape-based method,
we discard color information from our data set.

Fig. 5. The four sweeps associated with the third cup instance.

Trisk-22. The Trisk-22 data set consists of a set of 22 real-
world objects collected from an active vision robot named
Trisk in our laboratory. Trisk is loosely modeled after human
physiology and consists of a 6-degree-of-freedom (DOF) arm,
a 4-DOF actuated head with stereo vision cameras, and a three-
fingered hand with 6-DOF force-torque sensing abilities at
the fingertips. As shown in Figure 6, the dataset is divided
into eleven categories with a variable number of instances
per category. Images are generally low-resolution, of different
sizes and taken under varying lighting conditions. All views are
obtained during the traversal of three pre-determined camera
trajectories and are sampled at regular 1 second intervals.
There is a total of 1010 object views contained in the Trisk-22
database. It is available from the authors upon request.

In Figure 7 we visualize a number of views from that
data set with their extracted motion information overlaid. Due
to imaging artifacts, such as from specular highlighting, the
contour samples and their motion vectors are more noisy than
in the ETH-80 data set.

B. Results and Discussion

In this section, we compare the performance of the multi-
frame shape context classifier P (Ck|xSC) (referred to as SC
or the baseline), the feature motion-based classifier P (Ck|xM )
(M), and the combined classifier P (Ck|xSC ,xM ) (SC+M) on
both data sets. All classifiers accept a sweep of incoming
pictures until the entropy of the posterior reaches a threshold
and then return the MAP class estimate. The general approach
we take here is leave-one-sweep-out cross-validation, i.e., for
each possible hold-out sweep we retain the remainder of the
data for training purposes.

ETH-80. Figure 8 shows the leave-one-out error rate for the
single frame-based shape context classifier on the ETH-80
subset. This classifier computes the shape context distances to
each of the stored models and outputs the MAP class estimate
for every frame (essentially a nearest neighbor classifier with
the shape context distance metric). Contrary to the proposed
sweep-based classifiers SC, M, and SC+M, this recognition
system operates purely on a frame-by-frame basis and does
not take the object history into account.



Fig. 9. Mean posterior distributions after a specified number of dog views for SC, M, and SC+M classifiers. The entropy of the distributions is shown on the
bottom right.

All following experiments summarize the recognition per-
formance of the different sweep-based classifiers. For the first
experiment, we compute the average posterior distributions
P (Ck|xSC), P (Ck|xM ), and P (Ck|xSC ,xM ) obtained over
a range of 1-6 impressions of the same object. The results
are averaged over all twelve sweeps per object category (3
instances times 4 sweeps per instance). For sake of space,
we report the results for the dog category only; we obtain
comparable results for the other categories. Figure 9 shows
the mean posterior distributions together with the standard
deviation error bars for the SC, M, and SC+M classifiers. We
also show the reduction in entropy for each of the average
posterior distributions throughout the sweep.

For both SC and SC+M classifiers, the error rate reaches
zero for all categories after three consecutive object views.

We can draw the following conclusions from this experi-
ment: 1) Using motion as an additional source of information
is generally valid. For all categories the motion-based classifier
produces results that boost the posterior probability of the
correct category. 2) Motion information does not replace

traditional local features. As seen in Figure 9, the entropy
of the posterior P (Ck|xM ) is generally higher throughout
the sweep. In the same Figure one can also observe how
P (Ck|xM ) evolves from an uninformative (first view where no
motion data has been obtained yet) toward more informative
distributions as more object views are obtained. 3) Joining
both classifiers (SC+M) generally leads to a desirable pos-
terior distribution (as judged by both the correctness of the
MAP estimate as well as the posterior entropy) quickest. We
experience significant gains in posterior probability over the
baseline system for all classes in the database. For the dog
class in Figure 9, we achieve a mean posterior probability
P (Cdog|xSC ,xM ) of 0.72 versus 0.52 for the shape only
classifier after six views.

Trisk-22. For this data set, we again look at the average
posterior class distributions resulting from the classification of
the hold-out sweeps. The presentation is analogous to that of
the ETH-80 results, except for the fact that we now evaluate
the posterior distributions after up to 10 views (the smallest
sweep in the data set).



Fig. 10. Mean posterior distributions after a specified number of pear views for SC and SC+M classifiers.

The main results of this experiment are summarized in
Figure 10 for the pear class in the Trisk-22 dataset. The lower
of the two sets of distributions shows the improvement after
including the explicit feature motion model as an additional
source of information during classification. The results for the
remaining classes in the data set show similar benefits from
including the motion model in the classifier.

The following observations can be made about the results
on the Trisk-22 database: 1) Classification arising from the
MAP estimate of the motion model P (Ck|xM ) is generally
more discriminative than for the ETH-80 dataset. One can
assume that the reason for this lies with the denser sampling on
the object contours due to the generally smaller image sizes.
In addition to this spatially denser sampling, we also have a
temporally much denser sampling of object views in every
sweep which may add to the robustness of the motion model.
2) As observed before, the joint SC+M model outperforms the
SC baseline model significantly in terms of producing low-
entropy posterior class distributions at an earlier point in time.
This is more apparent with the Trisk-22 dataset than with the

ETH-80 data presented previously.

V. CONCLUSION

We established on two different data sets that feature motion
(or “object dynamics”) is a valid principle that can be exploited
for object recognition of active vision systems. In contrast to
our baseline model that essentially treats every image sequence
as unordered, our joint model P (Ck|xSC ,xM ) makes use of
the additional structural information revealed by the feature
motion between frames about the object under the assumption
that the object is static and not undergoing self-motion.

In the course of this paper we developed three probabilistic
classifiers based on the shape context algorithm (SC), feature
motion information (M), as well as both shape and feature
motion (SC+M). We then used a distinct (yet limited in
our initial experiments) set of robot head trajectories to test
our sweep-based recognition methods on two data sets. The
demonstrated system is invariant to scale and in-plane object
rotation. For the motion model, the latter is achieved by
training the system with different object orientations.



Fig. 6. The 11 object categories and object instances in the Trisk-22 database.

Fig. 7. Feature motion on a set of views contained in the database.

Fig. 8. The ETH-80 test set error rates for one-shot shape context matching.

We could demonstrate for both data sets that incorporating
feature motion achieves a higher-quality hypothesis about the
category in faster time. In particular for the real-world Trisk-
22 database the joint model considerably improved on the
individual models SC and M. In conclusion, feature motion-
based classification appears to be a valid addition to an active
recognition system built around invariant local features.

For future work, we will explore how recognition can be
accelerated further. In the current implementation, training
and test camera trajectories are identical. However, a simple
modification would allow the camera to skip ahead on the
trajectory to highly disambiguating views as determined by
the entropy of the posterior class distribution for all views
in the training set (e.g. [1]). Second, it is feasible to explore
whether clustering in the feature evolution space can reveal
part structures. Even in its current form, however, we believe to
have contributed a reliable object recognition system that may
particularly be useful for robotic or otherwise time constrained
active vision systems.
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