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AS ROBOTS INCREASINGLY BE-
come part of our everyday lives, they will
serve as caretakers for the elderly and dis-
abled, assistants in surgery and rehabilita-
tion, and educational toys. But for this to hap-
pen, programming and control must become
simpler and human–robot interaction more
natural. Both challenges are particularly rel-
evant to humanoid robots, which are highly
difficult to control yet most natural for inter-
action with people and operation in human
environments.

As this article shows, we have used bio-
logically inspired notions of behavior-based
control to address these challenges at the Uni-
versity of Southern California’s Interaction
Lab, part of the USC Robotics Research Labs.
By endowing robots with the ability to imi-
tate, we can program and interact with them
through human demonstration, a natural
human–humanoid interface. The human abil-
ity to imitate—to observe and repeat behav-
iors performed by a teacher—is a poorly
understood but powerful form of skill learn-
ing. Two fundamental open problems in imi-
tation involve interpreting and understanding
the observed behavior and integrating the
visual perception and movement control sys-
tems to reconstruct what was observed. 

Our research has a similarly twofold goal:
we are developing methods for segmenting

and classifying visual input for recognizing
human behavior as well as methods for struc-
turing the motor control system for general
movement and imitation-learning capabili-
ties. Our approach brings these two pursuits
together much as the evolutionary process
brought them together in biological sys-
tems.1,2We structure the motor system into a
collection of movement primitives, which
then serve both to generate the humanoid’s
movement repertoire and to provide predic-
tion and classification capabilities for visual
perception and interpretation of movement.
This way, what the humanoid can do helps it
understand what it sees and vice versa. The
more it sees, the more it learns to do, and thus
the better it gets at understanding what it sees
for further learning; this is the imitation
process.

Behavior-based robotics

Our work over the last 15 years has focused
on developing distributed, behavior-based
methods for controlling groups of mobile
robots and, most recently, humanoids. Behav-
ior-based control involves the design of con-
trol systems consisting of a collection of
behaviors.3 Behaviors are real-time processes
that take inputs from sensors (such as vision,
sonar, or infrared) or other behaviors and send
output commands to effectors (wheels, motors,
or arms) or other system behaviors. The con-
troller then is a distributed network of such
communicating, concurrently executed behav-
iors, typically with excellent real-time and scal-
ing properties. The interaction of the behav-
iors through the environment produces the
desired overall system performance.

THIS BEHAVIOR-BASED APPROACH TO STRUCTURING AND

CONTROLLING COMPLEX ROBOTIC SYSTEMS USES IMITATION

FOR INTERACTION AND LEARNING. THE USE OF BASIS

BEHAVIORS, OR PRIMITIVES, LETS THESE HUMANOID ROBOTS

DANCE THE MACARENA, DO AEROBICS, AND THROW.
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The inspiration for behavior-based control
comes from biology, where natural systems
are believed to be similarly organized, from
spinal reflex movements up to more complex
behaviors such as flocking and foraging.4,5

We have focused on applying these principles
to high-dimensional, behavior-based systems
such as those involved in controlling individ-
ual and group behavior of mobile and hu-
manoids robots. In all problem domains, we
have used basis behaviors, or primitives, to
structure and simplify the control problem,
as well as to enable adaptation and learning.

Basis behaviors and primitives. Several
methods for principled behavior design and
coordination are possible.3 In 1992, we intro-
duced the concept of basis behaviors, a small
set of necessary and sufficient behaviors that
could be composed (by sequencing or super-
position) for handling controller complexity
and simplifying robot programming. Basis
behaviors are the primitives that serve as a sub-
strate for control, representation, and learning
in our behavior-based systems. In first demon-
strating their effectiveness on groups of mobile
robots, we used a basis set consisting of avoid-
ance, following, homing, aggregation, and dis-
persion, which served to demonstrate higher-
level group behaviors including flocking,
foraging and collection, and herding.5We also
demonstrated how, given such a basis behav-
ior set, a learning algorithm could improve
behavior selection over time.

Collections of behaviors are a natural rep-
resentation for controlling collections of
robots. But how can we use the same idea in
the humanoid control domain, where the
body’s individual degrees of freedom are
more coupled and constrained? For this, we
have combined the notion of primitives with
another line of evidence from neuroscience—
mirror neurons—to structure humanoid
motor control into a general and robust sys-
tem capable of a variety of skills and learn-
ing by imitation.6

Humanoid control and imitation. Robot
control is a complex problem, involving sen-
sory and effector limitations and various
forms of uncertainty. The more complex the
system to be controlled, the more we must
modularize the approach to make control
viable and efficient. Humanoid agents and
robots are highly complex; a human arm has
seven degrees of freedom (DOF), the hand
has 23, and the control of an actuated human
spine is beyond current consideration. Yet

humans display complex dynamic behaviors
in real time and learn various motor skills
throughout life, often through imitation.

Methods for automating robot program-
ming are in high demand. Reinforcement
learning, which lets a robot improve its behav-
ior based on trial-and-error feedback, is very
popular. However, reinforcement learning is
slow, as the robot must repeatedly try various
behaviors in different situations. It can also
jeopardize the robot. In contrast, learning by
imitation is particularly appealing because it
lets the designer specify entire behaviors by
demonstration, instead of using low-level pro-
gramming or trial and error by the robot. 

In biological systems, imitation appears to
be a complex learning mechanism that in-
volves an intricate interaction between visual
perception and motor control, both of which
are complex in themselves. Although various
animals demonstrate simple mimicry, only a
very few species, including humans, chimps,
and dolphins, are capable of so-called true imi-
tation, which involves the ability to learn arbi-
trary new skills by observation.7This suggests
a complex mechanism, which has been impli-
cated as the basis for gestural communication
and even language evolution.8 The origins of
such a mechanism appear to lie in an evolu-
tionarily older system that combines percep-
tion and motor control and enables mimicry—
that is, the mirror system.6

Neuroscience inspiration

Evidence from neuroscience studies in
animals points to two neural structures we
find of key relevance to imitation: spinal
fields and mirror neurons. Spinal fields,
found in frogs and rats so far, code for com-
plete primitive movements (or behaviors),
such as reaching and wiping.4 More inter-
estingly, they are additive; when multiple
fields are stimulated, the resulting movement
is a meaningful combination. Because the
spine encodes a finite number of such fields,
they represent a basis set of primitives and
were precisely the inspiration for our work
on basis behaviors.

Investigators recently found neurons with
so-called mirror properties in monkeys and
humans. They appear to directly connect the
visual and motor control systems by map-
ping observed behaviors, such as reaching
and grasping, to motor structures that pro-
duce them.6 How many such movements the
mirror system directly maps is still unknown,

but the basic idea serves as rich inspiration
for structuring a robotic imitation system.

We combine these two lines of evidence,
spinal basis fields and mirror neurons, into a
more sophisticated notion of behaviors, or
perceptual-motor primitives. These let a
complex system, such as a humanoid, rec-
ognize, reproduce, and learn motor skills.
The primitives serve as the basis set for gen-
erating movements, but also as a vocabulary
for classifying observed movements into exe-
cutable ones. Thus, primitives can classify,
predict, and act.

In our approach to imitation, the vision sys-
tem continually matches any observed human
movements onto its own set of motor primi-
tives. The primitive, or combination of primi-
tives, that best approximates the observed input
also provides the best predictor of what the
robot expects to observe next. This expectation
facilitates visual segmentation and interpreta-
tion of the observed movement. Imitation, then,
is a process of matching, classification,and pre-
diction. Learning by imitation, in turn, creates
new skills as novel sequences and superposi-
tions of the matched and classified primitives.
The hierarchical structure of our imitation ap-
proach lets the robot initially observe and imi-
tate a skill, then perfect it through repetition, so
that the skill becomes a routine and itself a
primitive. The set of primitives can thus adapt
over time, to allow for learning arbitrary new
skills—that is, for “true” imitation.

Figure 1 shows the structure of our imita-
tion architecture, including the visual per-
ception and attention module, the classifica-
tion module, and the motor primitives.1 The
learning component allows adaptation both
at the classification level, for finding a closer
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Figure 1. Our imitation architecture, structured around
perceptual-motor primitives used for movement
segmentation, classification, and generation.



match to the observed behavior, and the
movement generation level, for optimizing
and smoothing the performance.

Choosing the primitives

Movement primitives or behaviors are the
unifying mechanism between visual percep-
tion and motor control in our approach, and
choosing the right ones is a research challenge,
driven by several constraints. On the one hand,
the motor control system imposes physical
bottom-up limitations, based on its kinematic
and dynamic properties. It also provides top-
down constraints from the type of movements
the system is expected to perform, because the
primitives must be sufficient for the robot’s
entire movement repertoire. On the other
hand, the visual system’s structure and inputs
influence the choice of primitives for mapping
the various observed movements onto its own
executable repertoire.

To serve as a general and parsimonious
basis set, the primitives encode groups or
classes of stereotypical movements, invari-
ant to exact position, rate of motion, size, and
perspective. Thus, they represent the generic
building blocks of motion that can be imple-
mented as parametric motor controllers. Con-
sider a primitive for reaching. Its most impor-
tant parameter is the goal position of the end
point—that is, the hand or held object. It
might be further parametrized by a default
posture for the entire arm. Such a primitive
lets a robot reach toward various goals within
a multitude of tasks, from grasping objects
and tools, to dancing, to writing and draw-
ing. We used just such a reaching primitive in
our experiments to reconstruct the popular
dance, the Macarena.2

This approach to motor control stands in
sharp contrast to the explicit planning ap-
proach to controlling robot manipulators,
which computes trajectories at runtime,
whenever they are needed. While fully gen-
eral, on-demand trajectory generation is
computationally expensive and potentially
slow. In our approach, instead of computing
trajectories over again, stereotypical trajec-
tories are built in as well as learned, then
looked up and parameterized for the specific
task at hand. The notion of primitives capi-
talizes on the fact that it is simpler to learn
and reuse an approximation of the inverse
kinematics for specific areas in the work-
space or a specific trajectory than it is to com-
pute them anew each time.

What constitutes a good set of primitives?
We have experimented with two types: innate
and learned. Innate primitives are user-
selected and preprogrammed. We have
demonstrated the effectiveness of a basis set
consisting of three types:

• discrete straight-line movements of sub-
sets of degrees of freedom, accounting for
reaching-type motions; 

• continuous oscillatory movements of sub-
sets of DOFs, accounting for repetitive
motions;9 and 

• postures, accounting for large subsets of
the body’s DOFs.2

Our approach computes the learned primi-

tives directly from human movement data. We
gather different types of such data, using the
following methods: vision-based motion
tracking of the human upper body (using our
tracking system), magnetic markers on the
arm (using the FastTrak system), and full-
body joint angle data (using the Sarcos Sen-
suit). We first reduce the dimensionality of the
movement data by employing principal com-
ponents analysis, wavelet compression, and
correlation across multiple DOF. Next, we use
clustering techniques to extract patterns of
similar movements in the data. These clusters
or patterns form the basis for the primitives;
the movements in the clusters are generalized
and parameterized, to result in primitives for
producing a variety of similar movements.

Visual classification into primitives. Visual
perception is also an important constraint on
the primitives and a key component of the imi-
tation process. Because the human (and
humanoid) visual attention is resource-lim-

ited, it must select the visual features that are
most relevant to the given imitation task.
Determining what those features are for a
given demonstration is a challenging problem.

Our previous work showed that people
watching videos of arm movements displayed
no difference in attention whether they were
just watching or intending to subsequently
imitate. In both cases, they fixated at the end
point—the hand or a held object.10 However,
classifying all possible end-point trajectories
into a useful set of task-independent categories
or primitives is impossible. Fortunately, this
is not necessary, because the imitation system
is targeted for mapping observed movement
of bodies similar to the observer’s own motor
repertoire. Accordingly, the mirror system is
sensitive to the biological motion of similar
bodies (for example, monkeys respond to
monkey and human movements). Further-
more, although human(oid) bodies are poten-
tially capable of vast movement repertoires,
the typical, everyday movement spectrum is
not nearly as large.

Consequently, we can effectively bias the
visual perception mechanism toward recog-
nizing movements that it can execute, espe-
cially those movements it performs most
frequently. The motor control system’s struc-
ture, and its underlying set of movement
primitives, provides key constraints for visual
movement recognition and classification.
Our primitive classifier uses the primitives’
descriptions to segment a given motion based
on the movement data. In the experiments
described below, we used end-point data for
both arms as input for the vector quantiza-
tion-based classifier.11Again, a key issue in
classification is representing the primitives
such that they account for significant invari-
ances, such as position, rotation, and scaling. 

Our classification approach forms the orig-
inal motion into a vector of relative end-point
movements between successive frames, then
smoothes and normalizes it. At the classifi-
cation level, we ignore all other information
about the movement, such as global position
and arm configuration, enabling a small set
of high-level primitive representations instead
of a potentially prohibitively large set of
detailed ones. Other information necessary
for correct imitation serves for parameteriz-
ing the selected primitives at the level of
movement reconstruction and execution.

To simplify matching, our approach de-
scribes primitives themselves in the same
normalized form. For each time step of the
observed motion, we compare a fixed-

20 IEEE INTELLIGENT SYSTEMS

WE CAN EFFECTIVELY BIAS

THE VISUAL PERCEPTION

MECHANISM TOWARD

RECOGNIZING MOVEMENTS

THAT IT CAN EXECUTE,
ESPECIALLY THOSE

MOVEMENTS IT PERFORMS

MOST FREQUENTLY.



horizon window to every primitive and
select the one that best matches the input.
Adjacent windows with identical classifi-
cations connect to form continuous seg-
ments. For any segments that fail to match
the given primitives, our approach uses the
reaching primitive to move the end point
frame by frame. Because the horizon win-
dow is of fixed size, the perception of a dis-
tinct match of a primitive applies only for
the given timescale. We are currently work-
ing on addressing classification at multiple
timescales. 

To validate our approach, we implemented
various examples of imitation, including
reaching, ball throwing, aerobics moves, and
dance, all on humanoid testbeds, taking
human demonstrations as input.12,13

Using human movement data. We used sev-
eral types of human movement data as input
to test our approach to imitation, including
visual motion tracking, Cartesian magnetic
markers, and joint angle data. For vision-based
motion tracking, we developed a motion-
tracking system that extracts features from a
video stream. The system is simple, since it
can easily be replaced by a more sophisticated
commercial version.  It relies on a constrained
(unoccluded and unambiguous) initial posi-
tion and kinematic model of the object or body
being imitated. This approach greatly simpli-
fies finding the initial match between the fea-
tures in the visual image and the observed
body. The match enables tracking of the body
over time, allowing for fast computation and
updating of current limb position, as well as
simple prediction of future position, used in
turn to speed up recognition. Our ongoing
work will address how the primitives them-
selves also provide further predictive capabil-
ity for the visual tracking. Figure 2 shows a
snapshot of the output of the vision-based
motion-tracking system.

We also used 3D magnetic marker data
from the human arm, gathered from subjects
imitating videos of arm movements while
wearing FastTrak markers for position
recording. (These data were gathered at the
National Institutes of Health Resource for
the Study of Neural Models of Behavior at
the University of Rochester.) We used four
markers: near the shoulder, the elbow, the
wrist, and the start of the middle finger. The
movement data resulting from this experi-
ment serve as input into our imitation sys-
tem, as well as for automatically learning the
primitives.

Finally, we used full-body joint angle data
gathered with the Sarcos Sensuit, a wearable
exoskeleton that simultaneously records the
joint positions of 35 DOF: the shoulders,
elbows, wrists, hips, knees, ankles, and waist.
(These data are obtained through a collabo-
ration with the ATR Dynamic Brain Project
at the Human Information Processing Labs in
Kyoto, Japan.) We are currently focusing on
reproducing the upper-body movements from
those data on our testbeds, described next.

Evaluation testbeds

To properly validate our approach to
humanoid motor control and imitation, we
use different experimental testbeds. Most of
our work so far has been done on Adonis
(developed at the Georgia Institute of Tech-
nology Animation Lab), a 3D rigid-body
simulation of a human with full dynamics
(Figure 3). Mass and moment-of-inertia
information comes from the graphical body
and human density estimates, and the motion
equations are calculated using a commercial
solver, SD/Fast. The simulation acts under
gravity and accepts external forces from the
environment. The static ground contact
removes the need for explicit balance con-

trol. We have added joint limits and self-
collision detection. Adonis consists of eight
rigid links connected with revolute joints of
one DOF and three DOF, totaling 20 DOF,

JULY/AUGUST 2000 21

Figure 2. A snapshot of the output of our vision-based
motion-tracking system.

Figure 3. The Adonis 20-degree-of-freedom full-body dynamic simulation.
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but most of our experiments use the 13 DOF
of Adonis’ upper body and currently do not
address locomotion.

We also use a pair of Cosimir 3D humanoid
avatars (developed at the University of Dort-
mund), which provide graphical simulations
with 65 DOF each (Figure 4). Unlike Adonis,
these avatars have actuated fingers, allowing
experiments with fine motion control. How-
ever, the avatars are not directly equipped with
dynamics, so we can experiment with differ-
ent models of mechanics, muscle models, and
so forth. As with Adonis, we do not address
balance with these avatars, but anchor them
at the hips. The avatars serve to imitate each
other or an external demonstrator.

As the project progresses, we plan to use
physical humanoid robots as the ultimate
testbeds for evaluating our imitation arch-
itecture. The NASA Robonaut is one candi-
date, through collaboration with the John-
son Space Center.  The Sarcos full-body
humanoid robot is another, through collab-
oration with the ATR Dynamic Brain Pro-
ject. Both robots are highly complex, built to
approximate human body structure as faith-
fully as practically possible, and feature
binocular cameras for embodied visual per-
ception critical for imitation.

OUR APPROACH TO HUMANOID
motor control and imitation relies on the use
of a set of movement primitives. We have
experimented with different types of such
primitives on different humanoid simulation
testbeds. Specifically, we have implemented
two versions of the spinal fields found in
animals. One closely modeled the frog data,
and used a joint-space representation—it
controlled individual joints of Adonis’s
arms.2 The other used another biologically
inspired approach, impedance control,14

which operates in the external coordinate
frame—in our case, each of Adonis’s hands.
Our impedance motor controller applied
forces at the hands and dragged the rest of
the arm along. We also used a default pos-
ture for the arm, which provided natural-
appearing, whole-arm movements that
reached the desired hand destination.

We tested both types of primitives on a
sequential motor task, dancing the
Macarena. Both proved effective, but each

had limitations for particular types of move-
ments. This led us to propose and explore a
combination approach, where multiple types
of primitives can be sequenced and com-
bined. For example, we constructed a basis
behavior set consisting of three types of
primitives:

• discrete straight-line movements using
impedance control; 

• continuous oscillatory movements using

coupled oscillators (or a collection of
piece-wise linear segments using imped-
ance control); and 

• postures, using PD-servos to directly con-
trol the joints. 

We also added a forth type of primitive, for
avoidance, implemented as a repulsive vec-
tor field. The continuously active fourth prim-
itive combined with whatever other primitive
was executing to prevent any collisions
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Figure 4. The Cosimir 65-degree-of-freedom full-body avatars.

Figure 5. Snapshots of Adonis dancing the Macarena.



between body parts. In the Macarena, for
example, this is necessary for arm movements
around and behind the head (Figure 5).

These results validated the notion of prim-
itives and served as a basis for our imitation
architecture. Primitives provide higher-level
movement descriptions; metric information
serves to parameterize those descriptions for
generating executable movement. This al-
lows a small number of general primitives to
represent a large class of different move-
ments, such as reaches to various destinations
on and around the body.

Our goal is not to achieve perfect, com-
pletely precise, high-fidelity imitation. While
that might be possible, through the use of
exact quantitative measurements of the ob-
served movement using signal-processing

techniques, it is not what happens in imitation
in nature and it is neither necessary nor help-
ful for our main goals: natural interaction and
programming of robots. For those purposes,
we aim for an approximation of the observed
behavior, one that allows any necessary free-
dom of interpretation by the humanoid robot,
but achieves the task and effectively commu-
nicates and interacts with the human. 

Our goal is also distinct from task-level imi-
tation,which only achieves the demonstration’s
goal, but does not imitate the behaviors
involved. This problem has been studied in
assembly robotics, where investigators used a
robotic arm to record, segment, interpret, and
then repeat a series of visual images of a human
performing an object-stacking task.15 While
that work focused on visual segmentation into

subgoals, we aim for a more biologically moti-
vated model of imitation: a system capable of
imitating the observed behavior—that is, the
process that brings the subgoals about,with suf-
ficient, but not perfect, accuracy.12

Because our current movement primitives
represent whole-arm movements, our visual
system either can use only the end-point
(hand) location for imitation or can gather
higher-fidelity data that include the position
of the elbow and other markers. In the exper-
iments described here, the position of the
hand over time sufficed for effective imita-
tion. The system segments hand trajectory
over time using the classifier, which, at each
point in time, matches the expected output of
each of the primitives with the observed input
and selects the best match. Consecutive
matches of the same primitive indicate a
higher confidence in the match. The classifi-
cation output is a sequence of primitives and
their associated parameters. These then go to
the motor control system and activate the
primitives in turn (and avoidance in parallel)
to reconstruct the observed behavior.12,13

In validating the imitation architecture, we
selected tasks from athletics, dancing, and
aerobics; six tasks were performed by a
human demonstrator in front of the vision
system and presented to our imitation system.
Figure 6 shows an example of the system per-
formance on three human-demonstrated
movements: a throw, a twist, and a raising of
the arms.12,13We are currently pursuing meth-
ods for evaluating the quality of the resulting
imitation, both in terms of the produced end-
point trajectories and the overall qualitative
appearance. Additional information about this
research program and videos demonstrating
the performance of the imitation system are
found at robotics.usc.edu/~agents/imitation.
html. 
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Place, SAL 228, Mailcode 0781, Los Angeles,
CA 90089-0781; mataric@cs.usc.edu; http://
robotics.usc.edu/~maja.
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JAN/FEB — Top 10 Algorithms of the Century
Jack Dongarra, dongarra@cs.utk.edu, University of Tennessee, and 
Francis Sullivan, fran@super.org, IDA Center for Computing Sciences 
The 10 algorithms that have had the largest influence on the development and
practice of science and engineering in the 20th century (also the challenges facing us
in the 21st century).

MAR/APR — ASCI Centers
Robert Voigt, rvoigt@compsci.wm.edu, and Merrell Patrick, mpatr@concentric.net 
Status report on the five university Centers of Excellence funded in 1997 along with
their accomplishments.

MAY/JUN — Earth Systems Science
John Rundle, rundle@hopfield.colorado.edu, Colorado Center for Chaos and Complexity 
The articles featured in this special issue will document the progress being made in
modeling and simulating the earth as a planet.

JUL/AUG — New Directions
This issue explores the various new directions facing the computing in science and
engineering field. Articles cover topics about Monte Carlo arithmetic, graphic
modeling, and satellite technology.

SEP/OCT — Computing in Medicine
Martin S. Weinhous, weinhous@radonc.ccf.org, Cleveland Clinic, and 
Joseph M. Rosen, joseph.m.rosen@hitchcock.org
In medicine, computational methods have let us predict the outcomes of our
procedures through mathematical simulation methods. Modeling the human body
remains a challenge for computational mathematics.

NOV/DEC — Computational Chemistry
Donald G. Truhlar, truhlar@chem.umn.edu, University of Minnesota, and 
B. Vincent McKoy, mckoy@its.caltech.edu, California Institute of Technology
Overviews of the state of the art in diverse areas of computational chemistry with an
emphasis on the computational science aspects.
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