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Abstract 
 
We want to build robots capable of rich social interactions with humans, including 
natural communication and cooperation. This work explores how imitation as a social 
learning and teaching process may be applied to building socially intelligent robots, and 
summarizes our progress toward building a robot capable of learning how to imitate 
facial expressions from simple imitative games played with a human, using biologically 
inspired mechanisms. It is possible for the robot to bootstrap from this imitative ability to 
infer the affective reaction of the human with whom it interacts and then use this 
affective assessment to guide its subsequent behavior. Our approach is heavily influenced 
by the ways human infants learn to communicate with their caregivers and come to 
understand the actions and expressive behavior of others in intentional and motivational 
terms. Specifically, our approach is guided by the hypothesis that imitative interactions 
between infant and caregiver, starting with facial mimicry, are a significant stepping-
stone to develop appropriate social behavior, to predict other’s actions, and ultimately to 
understand people as social beings.  
 
1 Introduction  
 
Humans (and many other animals), display a remarkably flexible and rich array of social 
competencies, demonstrating the ability to interpret, predict, and react appropriately to 
the behavior of others, as well as to engage others in a variety of complex social 
interactions. Developing computational systems that have these same sorts of social 
abilities is a critical step in designing robots, animated characters, and other computer 
agents that appear intelligent and capable in their interactions with humans (and each 
other), that are able to cooperate with people as capable partners, that are able to learn 
from natural human instruction, and that are intuitive and engaging for humans to 
interact. 
 
Yet, today, so many current technologies (animated agents, computers, etc.) interact with 
us in a manner characteristic of socially impaired people. In the best cases they know 
what to do, but often lack the social intelligence to do it in a socially appropriate manner. 
As a result, they frustrate us and we quickly dismiss them even though they can be useful.   



This is a problem given that some of the most exciting new applications for robots 
require them cooperate with humans as capable and socially savvy partners (see Fong et. 
al., 2002 for a review). For instance, robots are being developed to provide the elderly 
with assistance in the home. Such robots should be persuasive in ways that are sensitive 
to the human’s needs, such as helping to remind them when to take medication, without 
being annoying or upsetting.   
 
In other applications, robots are being developed to serve as members of human-robot 
teams---such as NASA’s humanoid robot, Robonaut (Ambrose et. al. 2003). This robot is 
envisioned to serve as an astronaut’s assistant to help its human counterparts maintain the 
space station or to explore distant planets. To provide a human teammate with the right 
kinds of assistance at the right time, a robot partner must not only recognize what the 
person is doing (i.e., his observable actions) but also understand the intentions or goals 
being enacted. This style of human-robot cooperation strongly motivates the development 
of robots that can infer and reason about the mental states of others within the context of 
the interaction they share.  
 
2   Overview 
 
As robot designers, it is possible to gain valuable insights into how social and 
communicative competencies might be acquired by a machine by looking to the field of 
human cognitive and social development. An increasing amount of evidence suggests that 
the ability to learn by watching others (and in particular the ability to imitate) could be a 
crucial precursor to the development of appropriate social behavior---and ultimately the 
ability to reason about the thoughts, intents, beliefs, and desires of others. For instance, 
Meltzoff (1996) hypothesizes that the human infant’s ability to translate the perception of 
another’s action into the production of her own provides a basis for learning about self-
other similarities, and for learning the connection between observable behavior and the 
mental states that produce it. Such theories could provide a foothold for ultimately 
endowing machines with human-style social skills and understanding. 
 
This paper presents a biologically inspired implementation of early facial imitation based 
on the AIM model proposed by Meltzoff & Moore (1997). Although there are competing 
theories to explain early facial imitation (such as an innate releasing mechanism model 
where fixed-action patterns are triggered by the demonstrator’s behavior, or viewing it as 
a by-product of neonatal synesthesia where the infant confuses input from visual and 
proprioceptive modalities), Meltzoff presents a compelling account for the 
representational nature and goal-directedness of early facial imitation, and how this 
enables further social growth and understanding (Meltzoff & Decety, 2003). It is the 
implications and extensibility of the AIM model that is of particular interest to us, rather 
than the ability to imitate facial expressions per se. Next, we present our computational 
model of facial imitation for a robot (demonstrated on its simulated counterpart), and 
discuss the key aspects of early facial imitation that it captures. Afterwards, we briefly 
discuss how our approach compares with prior work on creating imitative robots (and 
other imitative systems), especially as it relates to the problem of bootstrapping social 
understanding. 



 
Finally, we present a model for how our robot can bootstrap from its imitative ability to 
engage in social referencing. This capability is based on the social referencing 
capabilities displayed in early childhood whereby a child adopts his mother’s emotional 
reaction to a novel situation to decide whether to explore or avoid the unknown (Hornick 
et. al., 1987; Walden & Ogan, 1988). Similarly, the robot should be able to infer the 
affective state of the human who interacts with it, using the human’s appraisal to evaluate 
a novel situation in order to guide its own subsequent behavior (see section 8). Thus, 
whereas other robots have demonstrated the ability to imitate observable behavior, our 
model argues for how a robot could to use this capacity to infer the mental states (such as 
affective and attentional states) that underlie observable behavior. This is a fundamental 
aspect of our approach to building robots that understand people in social terms.  
 
3 Toward robots that understand other minds 
 
For robots to cooperate with people in a human-like way, they must be able to infer the 
mental states of others (e.g., their thoughts, intents, beliefs, desires, etc.) from observable 
behavior (e.g., their gestures, facial expressions, speech, actions, etc.).  In humans, this 
competence is referred to as a theory of mind (ToM) (Premack and Woodruff, 1978), folk 
psychology (Gordon, 1986), mindreading (Whiten & Byrne, 1997), or social 
commonsense (Meltzoff & Moore, 1997).  
 
In humans, this ability is accomplished in part by each participant treating the other as a 
conspecific---viewing the other as being “like me” (Goldman, 2001; Meltzoff & Brooks, 
2001). Perceiving similarities between self and other is an important part of the ability to 
take the role or perspective of another, allowing people to relate to and to empathize with 
their social partners. This sort of perspective shift may help us to predict and explain 
other’s emotions, behaviors and other mental states, and to formulate appropriate 
responses based on this understanding. For instance, it enables us to infer the intent or 
goal enacted by another’s behavior---an important skill for enabling richly cooperative 
behavior.  
 
3.1 Simulation Theory and Theory of Mind 
 
Simulation Theory (ST) is one of the dominant hypotheses about the nature of the 
cognitive mechanisms that underlie theory of mind (Davies and Stone 1995; Gordon 
1986; Heal 2003). It can perhaps best be summarized by the cliché “to know a man is to 
walk a mile in his shoes.” Simulation Theory posits that by simulating another person’s 
actions and the stimuli they are experiencing using our own behavioral and stimulus 
processing mechanisms, humans can make predictions about the behaviors and mental 
states of others based on the mental states and behaviors that we would possess in their 
situation. In short, by thinking “as if” we were the other person, we can use our own 
cognitive, behavioral, and motivational systems to understand what is going on in the 
heads of others.  
 



From a design perspective, Simulation Theory is appealing because it suggests that 
instead of requiring a separate set of mechanisms for simulating other persons, we can 
make predictions about others by using our own cognitive mechanisms to recreate how 
we would think, feel, and act in their situation---thereby providing us some insight into 
their emotions, beliefs, desires, and intensions, etc. We argue that a ST-based mechanism 
could also be used by robots to understand people in a similar way. Importantly, it is a 
strategy that naturally lends itself to representing the internal state of the robot and human 
in comparable terms. This would facilitate a robot’s ability to compare its own internal 
state to that of the person it is interacting with in order to infer the human’s mental states 
and to learn from observing the human’s behavior. Such theories could provide a 
foothold for ultimately endowing machines with human-style social skills, learning 
abilities, and social understanding.  
 
3.2 Imitation and Simulation Theory 
 
Meltzoff proposes that the way in which infants learn to simulate others is through 
imitative interactions. For instance, Meltzoff (1996) hypothesizes that the human infant’s 
ability to translate the perception of another’s action into the production of their own 
action provides a basis for learning about self-other similarities, and for learning the 
connection between behaviors and the mental states producing them.  
 
Simulation Theory rests on the assumption that the other is enough “like me” that he can 
be simulated using one’s own machinery. Thus, in order to successfully imitate and be 
imitated, the infant must be able to recognize structural congruence between himself and 
the adult model (i.e., notice when his body is “like” that of the caregiver, or when the 
caregiver’s body is “like” his own).  The initial “like me” experiences provided by 
imitative exchanges could lay the foundation for learning about additional behavioral and 
mental similarities between self and other.  
 
There are a number of ways in which imitation could help bootstrap a Simulation Theory-
type ToM  (Meltzoff & Decety, 2003). To begin with, imitating another’s expression or 
movement is a literal simulation of their behavior. By physically copying what the adult 
is doing, the infant must, in a primitive sense, generate many of the same mental 
phenomena the adult is experiencing, such as the motor plans for the movement. Meltzoff 
notes that the extent to which a motor plan can be considered a low-level intention, 
imitation provides the opportunity to begin learning connections between perceived 
behaviors and the intentions that produce them. Additionally, facial imitation and other 
forms of cross-modal imitation require the infant to compare the seen movements of the 
adult to his own felt movements. This provides an opportunity to begin learning the 
relationship between the visual perception of an action and the sensation of that action.  
 
Emotional empathy and social referencing are two of the earliest forms of social 
understanding that facial imitation could facilitate. Experiments have shown that 
producing a facial expression generally associated with a particular emotion is sufficient 
for eliciting that emotion (Strack, Martin and Stepper 1988). Hence, simply mimicking 
the facial expressions of others could cause the infant to feel what the other is feeling, 



thereby allowing the infant to learn how to interpret emotional states of others from facial 
expressions and body language. 
 
3.3 Mirror Neurons 
 
Interestingly, a relatively recently discovered class of neurons in monkeys, labeled mirror 
neurons, has been proposed as a possible neurological mechanism underlying both 
imitative abilities and Simulation Theory-type prediction of other’s behaviors and mental 
states (Williams et al., 2003, Gallese & Goldman 1998). Within area F5 of the monkey’s 
premotor cortex, these neurons show similar activity both when a primate observes a 
goal-directed action of another (such as grasping or manipulating an object), and when it 
carries out that same goal-directed action (Rizzolatti et. al., 1996; Gallese et. al., 1996).  
 
This firing pattern has led researchers to hypothesize that there exists a common coding 
between perceived and generated actions (Prinz, 1990). These neurons may play an 
important role in the mechanisms used by humans and other animals to relate their own 
actions to the actions of others.  To date, it is unknown if mirror neurons are innate in 
humans, learned through experience, or both.  Interesting computational models have 
been proposed for how they might be learned (Oztop & Arbib 2002).  
 
Mirror neurons are seen as part of a possible neural mechanism for Simulation Theory. 
By activating the same neural areas while perceiving an action as while carrying it out, it 
may not only be possible but also necessary to recreate additional mental states 
frequently associated with that action. A mirror neuron-like structure could be an 
important building block in a mechanism for making predictions about someone else’s 
intentions and beliefs by first locating the perceived action within the observer’s own 
action system, identifying one’s own beliefs or intentions typically possessed while 
carrying out that action, and then attributing them to the other person.   
 
To summarize, there are a variety of ways in which having the ability to imitate others 
and the mechanisms and structures that ability entails could help a robot begin to interpret 
and make predictions about other’s behavior. In the next section we highlight key aspects 
of early infant imitation that we want to capture in our implementation in order to 
bootstrap our robot’s ability to socially learn from people and to understand them as 
social beings. 
 
4 Characteristics of imitation in human infants 
 
Early infant imitation occurs within an interpersonal context. According to Meltzoff 
(1996), “human parents are prolific imitators of their young infants.” Caregivers 
continually shadow and mirror their infant’s animated movements, facial expressions, 
and vocalizations. In turn, infants seem to recognize when their behavior has been 
matched. They preferentially attend to adults whose actions are contingent on their own, 
and especially to adults who are imitating them (Meltzoff and Gopnik, 1993). 
Specifically, they seem to recognize both temporal contingency (i.e., when the infant 
performs action x, the adult performs action y, where x and y differ in form), as well as 



structural congruence (i.e., when x and y have the same form). When matched, infants 
often respond by smiling and visually attending to the caregiver for longer periods of 
time. Meltzoff posits that infants are in fact intrinsically motivated to imitate their 
conspecifics, and that the act of successful imitation is its own reward. 
 
This early imitative capability continues to develop over time to become more versatile 
and sophisticated. Meltzoff suggests a four-stage progression of imitative abilities (for a 
review, see Meltzoff, 1996 and Rao & Meltzoff, 2003). The first stage is called body 
babbling (akin to vocal babbling) that involves random experimentation with body 
movements in order to learn a set of motor primitives that allow him to achieve 
elementary body configurations. Through trial-and-error learning, even starting while in 
utero, the neonate builds up a “directory” for mapping movements to goal states that can 
be monitored proprioceptively. Eventually the neonate acquires an act space that enables 
new body configurations to be interpolated within this space.  
 
Next, the infant is able to imitate body movements. Just hours and even minutes after 
birth, neonates can imitate facial acts that they have never seen themselves perform. This 
suggests an innate mapping between the observation and execution of movements in 
humans. It has been shown that 12 to 21 day old infants can identify and imitate the 
movement of a specific body part and imitate differential action patterns with the same 
body part (Meltzoff & Moore, 1997). This is called organ identification. 
 
At 6-weeks, infants have been shown to perform deferred imitation from long-term 
memory after seeing the target facial act performed 24 hours earlier (Meltzoff & Moore, 
1994).  They are able to correct their imitative response in a goal-directed manner from 
memory without requiring any feedback from the model. This presents further evidence 
that observation-execution pathway is mediated by a representational structure.  
 
Meltzoff argues that this structure is represented within an intermodal space into which 
infants are able to map all expressions and movements that they perceive, regardless of 
their source. In other words, the intermodal space functions as a universal format for 
representing gestures and poses---those the infant feels himself doing, and those he sees 
the adult carrying out. The universal format is in terms of the movement primitives 
within his act space. Thus the perceived expression is translated into the same movement 
representation that the infant’s motor system uses (recall the discussion of mirror neurons 
in section 3.3) making their comparison much simpler.  The imitative link between 
movement perception and production is forged in the intermodal space.  
 
Once the infant is several months old, he can imitate novel actions upon objects. By 1 to 
1.5 years old they are adept at imitating body movements and actions on objects (such as 
toys) in a variety of contexts. At 18 months, the infant is able to read beyond perceived 
behavior to infer the underlying goals and intensions of the actor (Meltzoff, 1995). This is 
demonstrated by their ability to imitate the goal of an attempt that was enacted 
unsuccessfully. For instance, the adult may try to perform a manipulation on an object 
where her hand slips several times so the goal remained unachieved. The infant does not 
imitate the literal action, but rather performs the action correctly (or even performs novel 



means) to achieve the intended goal.  This brings the infant to the threshold of 
understanding the behavior of others in terms of their underlying mental states. 
 
5 A Robot Architecture for Facial Imitation 
 
To bring our robot to a similar point, it is important to capture these key aspects of infant 
imitation in our implementation. Much as infants’ earliest social interactions involve 
imitating facial expressions, our first step towards creating a robot capable of social 
understanding is an implementation of facial mimicry. In order for a robot to imitate it 
must be able to translate between seeing and doing. Specifically, to solve the facial 
imitation task the robot must be able to: 
 

• Locate and recognize the facial features of a demonstrator  
• Find the correspondence between the perceived features and its own 
• Identify a desired expression from this correspondence 
• Move its features into the desired configuration 
• Use the perceived configuration to judge its own success  

 
Meltzoff and Moore (1997) proposed a descriptive model for how an infant might 
accomplish these tasks, known as the Active Intermodal Mapping Hypothesis (AIM). A 
schematic of the AIM model is presented in Figure 1. In general, the AIM model suggests 
that a combination of innate knowledge and specialized learning mechanisms underlie 
infants’ ability to imitate in a cross-modal, goal-directed manner. Specifically, AIM 
presents three key components of the imitative process as discussed in the previous 
section: motor babbling, organ identification, and the intermodal space. Taken together, 
this model suggests mechanisms for identifying and attending to key perceptual features 
of faces, mapping the model’s face onto the imitator’s, generating appropriate 
movements, and gauging the correspondence between produced and perceived 
expressions. We have used this model to guide our own implementation as summarized 
in Table 1 (with allowances made for the differing physical limitations of babies and 
robots).  
 
5.1 Leonardo, the Robot 
 
Our experimental platform is a robot called Leonardo (Leo)---a 64 degree of freedom 
(DoF) fully embodied humanoid robot that stands approximately 2.5 feet tall (see Figure 
2). The robot’s feet are permanently affixed to the robot’s base, but the robot is otherwise 
fully articulated. The design is targeted for rich social exchanges with humans as well as 
physical interactions with the environment. Hence, it is designed to be able to 
communicate and gesture to people as well as physically manipulate objects. The robot 
has an expressive face (24 DoF not including the ears) capable of near human-level 
expression when affixed to its silicone face, and an active binocular vision system (4 
DoF), making it an ideal platform for implementing facial mimicry. In addition, the robot 
is equipped with two 6 DoF arms, two 3 DoF hands, two actively steerable 3 DoF ears, a 
5 DoF neck, with the remainder of the DoFs in the shoulders, waist, and hips.  
 



We have also developed simulated version of Leonardo (shown in Figure 2), which 
shares the same kinematics, sensory input, and cognitive architecture as the physical 
robot. The animated version of the robot is an exact joint for joint model of the real-world 
Leonardo, and both use the same behavioral and motor systems (described in the 
following sections). Thus, the implementation presented in this paper works with both the 
physical and the simulated robot. Given that the silicone face is not currently on the 
physical robot, the results in this paper are presented on the animated version so that the 
expressions are readable. 
 
In order to give Leonardo the ability to locate and identify the facial features of a human 
partner, we use the visual sensing software from Nevengineering Inc. 
(www.nevengineering.com). Their Axiom ffT software locates a face in an attached 
camera's field of view and tracks its features, returning a set of normalized 2D 
coordinates for 22 points on the user’s face: 2 points for each eyebrow, 3 for each eye, 4 
for the nose, and 8 for the mouth (see Figure 3). For the results presented with Virtual 
Leonardo we used a statically mounted camera. On the physical robot, the software runs 
on a camera mounted within one of Leonardo’s eyes. 
 
5.2 Cognitive Architecture Overview 
 
Leonardo’s imitative ability is implemented within an existing cognitive, affective, and 
behavioral framework (Burke et. al., 2001). As a result, interacting with Leonardo is 
more like interacting with a creature rather than a interacting with robot that is 
specialized for one skill.  Figure 4 presents an overview of the cognitive architecture of 
our system. In this section, we briefly describe the system components most relevant to 
the imitative task at hand.  
 
5.2.1 Perception System 
 
We use a hierarchical mechanism called a percept tree to extract state information from 
sensory input. Each node in the tree is called a percept, with more specific percepts closer 
to the leaves. Percepts are atomic perception units, with arbitrarily complex logic, whose 
job is to recognize and extract features from raw sensory data. For example, a face 
percept might recognize the presence of faces in the visual field, and its children might 
recognize the presence of specific features such as the eyes, nose, etc. The root of the tree 
is the most general percept, which we call “True” since it is always active. 
 
Our current imitation architecture has a perception system that receives sensory input 
from the Axiom ffT software, and implements a number of simple percepts. In addition to 
the “True” percept, there is a face percept, which fires whenever it receives Axiom ffT 
data indicating the presence of a human face. Similarly, this percept has child percepts 
corresponding to facial organs – the eyebrows, eyes, nose and mouth. There are a number 
of movement percepts, which detect when the human’s facial features have moved, and 
contingency percepts, which detect when they have moved in response to Leonardo’s 
own movements (the details of which are again described in section 6.1.3).  
 



5.2.2 Action System 
 
The robot’s action system is responsible for behavior arbitration --- choosing what 
behavior the robot engages in and when it does so. Individual behaviors are represented 
in our system as action-tuples (Blumberg et. al., 2002). For our purposes here, the key 
components of the action-tuple are its action and its trigger context. The action is a piece 
of code primarily responsible for sending high-level requests for movements or 
movement sequences to the motor system that commands the robot’s actuators. The 
request can range from something relatively simple such as to “look at” something, to 
more complex actions like “press a button”. The trigger context is responsible for 
deciding when the action should be activated. In general, there are a variety of internal 
(e.g., motivations) and external states (e.g., perceptions) that might trigger a particular 
action.  
 
Action-tuples are grouped into action-groups that are responsible for deciding at each 
moment which single action-tuple will be executed. Each action-group can have a unique 
action selection scheme. For our imitation architecture we use a single action-group with 
an action selection scheme that activates an action-tuple any time its trigger context goes 
high.  
 
Leonardo’s facial imitation architecture requires two key actions: a motor babbling 
action and an imitation action, each of which is wrapped in an action-tuple. The function 
and details of these two actions are presented in section 6.1 and section 6.2, respectively. 
 
5.2.3 Motor System 
 
Once the action system has selected an action for the robot to perform, the motor system 
is responsible for executing the movements required to carry out that action.  In our 
system, motor movements are represented as paths through a directed weighted graph, 
known as the creature’s posegraph (see Downie, 2001). Each node (or pose), in the graph 
is an annotated configuration of the creature’s joints, and can be thought of as a single 
body configuration.   
 
It is worth noting that this motor system design is quite similar to that hypothesized by 
AIM. Poses can be seen as a variation on “organ relations,” with the posegraph being a 
specific implementation of the movement-end state directory structure that AIM 
proposes. For the purposes of implementing facial mimicry, Leonardo was provided with 
a posegraph containing a small set of basis facial poses (presented in Figure 5). They can 
be seen as analogous to the initial movement-end state pairs that AIM suggests infants 
discover in utero and are born knowing.  
 
Movement Primitives 
 
A link between two poses represents an allowed transition between joint body 
configurations. These links are designed to only permit biologically plausible and safe 
movements, which will not put the robot into unnatural body configurations or potentially 



dangerous ones. Together, the poses and the paths between them define the robot’s space 
of possible movements (its pose space), with entire movement trajectories existing as 
routes through this space.  For example, a pointing gesture might be represented as a path 
through 15 poses. 
 
In addition to the posegraph, the motor system contains motor programs that are capable 
of generating paths through pose space in response to requests from actions. These 
programs may be quite simple (essentially no more than playing out a particular 
animation) or more complex (for example, trying to touch or pick up an object). 
 
For our facial imitation architecture, we use a basic posegraph where all of Leo’s basis 
poses are directly connected to each other. Our motor program takes the current and 
desired poses and smoothly transitions between them by slowly rotating each joint into its 
new position.
 
Interpolating Primitives 
 
The motor system allows for a wide range of safe, realistic-looking motor actions, that 
can be easily created, stored, and recreated. However, it is often impractical to represent 
all of a robot’s desired poses explicitly. The motor system therefore also allows for the 
creation of blended poses: poses which are a weighted average of other poses (the 
weights used for blending are known as blend weights). Using blended poses creates an 
exponential increase in the size of the creature’s pose space, allowing whole ranges of 
positions and actions to be generated from only a few explicit examples (for instance, the 
robot’s button-pressing behavior along a continuous line can be generated by blending 
the poses in three example routes: press-left-button, press-right-button and press-center-
button). The final pose is computed on a per joint basis, as shown in Equation 1. 
 
Equation 1 

For each joint angle Jk in the robot: 
 

Jk = Ek, i × Wi

i=1

NumExemplars

∑  

 
Where Ek,i is the kth joint angle in the ith exemplar, and Wi is the weight of the ith 
exemplar 
  
The motor system is able to treat blended poses just like regular poses. Together, Leo’s 
basis facial poses define the convex hull of a facial pose space, and Leonardo can achieve 
all the poses within that space by blending the basis poses with different weights. This 
system is a nice analog to Meltzoff’s suggestion that motor primitives within the infant’s 
repertoire can be interpolated to generate new movements. This is important for the 
matching-to-target process that is characteristic of early facial imitation.  
 



Motor Subsystems 
 
Finally, the robot can be given even greater movement flexibility by using a number of 
motor subsystems, each of which is responsible for controlling a closely associated set of 
joints (e.g left arm, right arm, torso, etc.). Each motor subsystem is able to search the 
posegraph and execute movements independently, allowing each subset of joints or 
“body organ” to be in a different part of the posegraph simultaneously. Once again, this 
allows the robot a greater range of motions from fewer poses.  
 
Our facial imitation implementation uses three motor subsystems within Leo’s face, 
corresponding to his mouth region, left eye region and right eye region (see Figure 5). 
This allows Leo to move each of these regions independently of each other to generate 
novel expressions. Within this paper, when we refer to the motor system as searching for 
a pose in the posegraph or executing a pose, this is shorthand for the motor system 
delegating these tasks to the three subsystems. 
 
6 Learning from Imitation Games 
 
The overall structure of an imitative interaction consists of two parts: a first stage, where 
the human participant imitates Leonardo’s facial expressions, and a second stage where 
Leonardo mimics the human’s expressions. The interaction is summarized in Figure 6. 
Leonardo takes advantage of the bi-directional structure of the imitative exchange by 
accomplishing different tasks during each part. During the first stage of the interaction 
Leo solidifies his representation of the correspondence between the human’s facial 
features and his own (the intermodal representation). During the second stage, Leonardo 
uses this correspondence to model and imitate the human’s expression in a goal-directed 
fashion. Data flow paths for each stage within the cognitive architecture are presented in 
Figure 4. 
 
6.1 Human Participant Imitates Leonardo 
 
The imitative interaction begins with the human participant approaching Leonardo. 
Leonardo relies on the Axiom ffT software (described in section 5.2.1) to detect when a 
human face is present in the robot’s field of view. When data from the facial feature 
tracker indicates that Leo is seeing a human face, the face percept in Leo’s perception 
system becomes active and triggers the robot’s motor babbling action.  
 
6.1.1 Motor Babbling 
 
Similar to the motor babbling exhibited by infants in the AIM model to physically 
explore their motor space, Leonardo’s motor babbling action causes the robot to 
physically explore its pose space. While Leo’s motor babbling action is active, it 
randomly selects a pose from the basis set used to create its posegraph, requests that the 
motor system go to that pose and hold it for a moment (approximately four seconds), and 
then selects a new pose. While Leonardo is motor babbling, the human participant tries to 
imitate Leo’s facial expressions. 



Motor babbling serves a number of purposes in the imitative interaction. First, by 
becoming more active when the user approaches, Leo can communicate in a simple way 
its awareness of the human participant. Leonardo beginning to motor babble when it sees 
the person can be seen as analogous to an infant becoming more active in the presence of 
an interested caregiver. Second, our primary reason for having Leonardo perform motor 
babbling is to help the robot learn to map perceived human expressions onto an 
intermodal space, like the one used by infants in the AIM model. By detecting when the 
human participant is likely to be imitating him, Leonardo can use its own pose (generated 
through motor babbling) and the human’s imitation of this pose, to improve the robot’s 
ability to map the human’s facial expression to its own intermodal space.  
 
6.1.2 Intermodal Representation 
 
According to Meltzoff’s model, infants use the same internal representation for their own 
expressions and those they see an adult perform. Furthermore, this representation is the 
same one used within the infant’s motor system to describe how the infant must move in 
order to achieve a given expression. As such, this representation bears strong 
resemblance to the function of mirror neurons (Meltzoff & Decety, 2003). The 
intermodal representation allows the infant to discover correspondences between his own 
expressions and those of the human model, by providing a format in which they can be 
directly compared.  
 
In our motor system, Leonardo’s expressions are represented as poses, and the motions to 
achieve them are represented as routes through Leonardo’s posegraph. We chose to use 
poses in Leonardo’s own joint space as its intermodal representation. Therefore, the 
human expressions that Leonardo perceives must be mapped from the set of two-
dimensional absolute coordinates provided by the facial feature tracking software onto 
the robot’s joint space. This process is complicated by the fact that there is not a one to 
one correspondence between the tracked facial features and Leo’s joints. To solve this 
problem, Leonardo learns the intermodal representation from experience while the human 
participant is imitating the robot. This is a rough analogy to learning mirror neurons for 
encoding and representing perceived movement in terms of motor primitives (Oztop & 
Arbib 2002). The robot models the intermodal map using a separate neural network for 
each facial region corresponding to the right eye, left eye, and mouth (see section 6.1.4). 
 
6.1.3 Detecting Contingency 
 
In order for Leo to successfully train the neural nets, the robot must provide the networks 
with example input-output pairs. Within the framework of the imitative interaction, one 
way for Leonardo to acquire this data is for the robot to identify when the human 
participant is imitating it, and to then store a snapshot of the current facial feature data 
and the robot’s own current joint configuration. Unfortunately, before the neural 
networks are trained, Leo cannot detect an exact correspondence between the human’s 
facial features and its own pose. Identifying when the robot is being imitated is tricky at 
this stage. 



The literature on infant imitation indicates that infants are especially responsive to adult 
movements that appear to be contingent on their own. Similarly, Leonardo determines 
when a person is imitating Leo contingently based on the elapsed time (less than a couple 
of seconds) between the start of Leo’s movement and the human’s response. To avoid 
false positive detections of human movement due on sensor noise, thresholds for human 
movement were set per dimension relative to the standard deviation of data for that 
dimension. In addition, the human’s movement must be surrounded by a few seconds of 
stillness, so as not to classify constant motion as contingent. Some error is still possible 
with this metric; for instance, if the human moves contingently but is not imitating Leo. 
Overall, however, we found that using contingent motion to detect imitative interactions 
produced more accurately trained neural nets. 
 
6.1.4 Organ Identification 
 
We found that during the training process, people often only imitate a particular region of 
the robot’s face (e.g., the mouth, eyebrows, etc.) rather than the robot’s entire expression. 
For instance, the human may choose to only imitate Leo’s mouth, in which case the rest 
of their face provides irrelevant data for the training of their respective regions. To 
address this issue, we partition the incoming facial feature data and Leo's degrees of 
freedom into three independent groups of features that are handled separately: the left 
eye/eyebrow area, the right eye/eyebrow area, and the mouth.  The data from each facial 
region of the human’s face is collected using three separate contingency detectors. These 
groupings allows Leo to start with a rough idea of which of its organs correspond to those 
of the human participant, an advantage the AIM model proposes infants share.  
 
Inside each area, the exact relationship between the coordinate data from the facial 
feature tracking software and the joints in Leo's face is not yet known and must be 
learned individually using separate neural networks.  For each, we used a two-layer 
network, with 7 hidden nodes (7 was established to be a good number after we varied it 
for several tests).  The inputs to the networks are the relevant degrees of freedom from 
the Axiom ffT data: the x and y positions of facial features, normalized to be invariant to 
the scale of the face, facial translation, and rotation. The outputs are the angles for 
relevant joints in Leo's face. Each joint in the virtual robot is restricted to one degree of 
freedom of rotation, just as the motors in the actual robot are. 
  
6.1.5 Representation of Novel Expressions 
 
Once the separate neural networks are trained, they are able to take input the data from 
visual perception of a human expression, and output the intermodal representation of that 
expression in terms of the robot’s joint angles. The separation into facial regions has an 
important advantage: Leo can create an intermodal representation of the human pose 
separately for each group of features. This allows him to generalize and create overall 
expressions that may never have been in the babbling set.  For example, if none of Leo’s 
babbled poses have asymmetric eyebrows, a neural network for the entire face would 
never allow him to create an intermodal representation with one cocked eyebrow. With 



this method, however, the eyebrows each respond separately to produce a representation 
of the novel facial expression. 
 
6.2 Leonardo imitates the Human Participant 
 
Once Leo is capable of representing perceived facial expressions in intermodal space, the 
robot begins trying to imitate the human (the imitation action is triggered once Leo has 
acquired a predetermined number of facial snapshots). Leonardo physically manifests his 
switch in focus by ceasing to motor babble. Instead, Leo becomes still, and begins trying 
to detect an appropriate expression of the human participant to imitate. Meltzoff notes 
that young infants don’t imitate facial expressions that are presented statically. Rather, in 
order to imitate, infants must see the adult assume the facial expression, perhaps because 
the preceding movement is a clue that the expression that follows is worth imitating. 
Correspondingly, we decided to have Leonardo use motion cues to determine when to 
begin imitating. 
 
Like an infant, Leo attempts to reproduce the human model’s facial expression when it is 
a stable expression that directly follows a movement. Using our previously described 
methods for detecting stability and motion in the human facial feature data, we created a 
collection of percepts, each of which fire when the human significantly moves an organ, 
and a corresponding trigger context, which activates Leonardo’s imitation action. Leo’s 
imitation action mediates his imitative behavior, by working closely with his motor 
system to generate and evaluate successive approximation of the perceived pose as it is 
represented in intermodal space.  
 
6.2.1 Goal Directed Search 
 
To imitate the observed expression, Leonardo’s motor system searches for the pose in the 
posegraph that is the closest match to the intermodal equivalent. This step is essentially 
an implementation of the mechanism AIM posits for looking up organ relations from the 
intermodal space in the movement-end state directory. Finding this pose is a critical step 
in the imitation process. Next, Leo’s motor system executes this pose, producing the 
robot’s first imitative attempt. However, infants do not end their attempt at imitating with 
this first approximation. Rather, infants use their initial solution as the starting point for a 
goal-directed search of their motor space, more accurately imitating the adult’s 
expression, and refining their motor knowledge.  
 
In a similar manner, Leonardo searches for a more accurate imitative pose by blending 
the initially closest pose with others in its posegraph, incrementally adjusting the blend 
weights until he has found the best local match. Currently, Leonardo’s imitation action 
executes this search using a simple hill-climbing algorithm. Using the initial basis pose as 
a starting point, the hill-climbing algorithm iteratively searches for a set of weights 
defining the blended pose that is the local best match to Leo’s representation of the 
human’s expression.  
 
 



Equation 2 

Pseudocode For Hillclimbing Algorithm:

Define :
•D as the distance metric defined in Equation 3
•P({x1,x 2,x 3...}) is the blend of facial poses with given weights x1,x 2,x 3... 
•BW (k,W ) =  {w1,  w2,  ...,  wSP − c,...,wk + c,...}
     (That is, the array W with c subtracted from the value at index SP and added 
     to the value at index k)

W is the array of blend weights which is updated such that P(W ) iteratively 
approaches I , where I is the target intermodal pose.

Initialize W to all 0's with a 1 at index SP, where SP is the index of the initial 
basis pose.

 

 
Repeat until W converges :
{
     IndexToIncrease =  

i=1...n
ArgMin(D(I ,P(BW (i , W ))))

     W = BW (IndexToIncrease,W ) 
}

 

 
The distance metric that the hill climber uses is a simple implementation of the 
equivalence detector described in the AIM model---to find the distance between the 
human pose represented in intermodal space and Leo’s pose, we sum the average angular 
and translational distance across all joints. While we were initially uncertain this would 
be a sufficient measure of equivalence between poses, our results so far have found that 
this distance metric functions adequately, and seems to accurately reflect the visual match 
judgments made by human observers (see section 7). Leo identifies the closest pose by 
finding the pose P in his basis set with the minimum distance to the intermodal pose I 
using the following equation.  
Equation 3 

Distance D between pose I and P : 

D(I ,P) =1/ n AngularDist(IJk,PJk)•W
k=1

n

∑ k  

Where IJk (PJk) is the kth joint in Pose I (P) and Wk is weight of joint k  
 
The hill-climbing algorithm continues iterating until it can no longer find a combination 
of blend weights that produces a better matching pose than the result of the last iteration. 
Once Leonardo has carried out the final blended pose, the robot has imitated the human’s 
pose as best it can, and the imitation cycle is complete. Leo’s imitation action deactivates, 
and the robot begins attending to the motions and expressions of the human participant 
again, trying to detect another appropriate pose to imitate. 
 



7 Facial Imitation Results 
 
Our implementation has been tested on the simulated version of Leonardo (Virtual 
Leonardo) given that the physical robot’s silicone face is not yet mounted. The same 
software system is used to drive either the animated or physical robot. We have found the 
system to produce a satisfactory match between the human input and Leonardo’s 
successive approximations. The realism of Leonardo’s produced expressions is also 
reasonable, especially when its output is contrasted with the raw pose data that is often 
noisy.  
 
The entire interaction with Leonardo occurs in real time, with the human participant 
imitating Leonardo for approximately 5 minutes, followed by Leonardo imitating the 
human until the human terminates the interaction. The intermodal representation learned 
in the first phase can be acquired by interacting with a different person than the one that 
Leo imitates in the second phase of the game. Hence a new intermodal representation 
does not have to be learned for each person Leonardo interacts with (however this 
mapping seems to be more robust for the mouth region and more person-specific in the 
eye region). 
 
Figure 7 presents three imitative interactions, including the human facial expression, the 
representation of the human’s pose in Leo’s joint space (the human pose represented in 
intermodal space), and Leo’s final approximation of the human’s pose. The images show 
Leo imitating a number of facial expressions presented by a human participant involving 
the mouth and eyebrows. The learned intermodal representation of the human pose is 
shown as well as Leo’s best approximation of it via goal-directed search of its blend 
space.  
 
Figure 8 highlights the improvements made by Leonardo’s motor system on the raw 
neural net output. While Figure 7 clearly demonstrates that the neural nets are able to 
learn a very accurate intermodal mapping from the human participant’s expression to 
Leonardo’s joint space, this raw mapping still occasionally produces impossible joint 
configurations due to noise in the tracking data. However, by using Leo’s closest basis 
pose as the starting point for the search for the best matching pose to the human’s 
expression, Leonardo does not attempt to execute impossible or unnatural joint 
configurations.  
 
Figure 9 shows some of Leo’s intermediate approximations of the model’s expression, 
generated while searching its blend space. As can be seen in this figure, Leonardo is able 
to produce visually successful matches to a wide variety of human facial expressions via 
interpolation of its movement primitives.  Finally, Figure 10 shows that Leonardo is able 
to superimpose its motor subsystems corresponding to different facial regions to 
represent and generate novel facial poses, such as a “cocked” eyebrow. 
 
8 From Facial Imitation to Social Referencing 
 



Social referencing is an important form of socially guided learning in which one person 
utilizes another person’s interpretation of a given situation to formulate his or her own 
interpretation of it and to determine how to interact with it (Feinman 1982, Klinnert et. al. 
1983). Given the large number of novel situations, objects, or people that infants 
encounter (as well as robots), social referencing is extremely useful in forming early 
appraisals and coping responses toward unfamiliar stimuli with the help of others.  
 
Referencing behavior operates primarily under conditions of uncertainty---if the situation 
has low ambiguity then intrinsic appraisal processes are used (Campos & Stenberg, 
1981). Further, social referencing can take multiple forms. For instance, emotional 
referencing is viewed as a process of emotional communication whereby the infant learns 
how to feel about a given situation, and then responds to the situation based on his or her 
emotional state (Feinman et. al. 1992). For example, the infant might approach a toy and 
kiss it upon receiving a joy message from the adult, or swat the toy aside upon receiving a 
fear message (Hornik & Gunnar, 1988). In instrumental referencing, the infant looks to 
the adult to determine what to do in a particular situation or how to interact with the 
stimulus in question (Uzgiris & Kruper, 1992). Clearly instrumental and emotional 
factors interact---a given emotional state biases the child to have certain kinds of 
interactions with the stimulus, and interacting with a stimulus in a particular way can 
influence how the child feels about it.  
 
This section presents ongoing work in developing a model of social (emotional) 
referencing for Leonardo. Due to space constraints, we will not present the model in 
detail and shall only briefly describe the associated shared attention and emotion systems. 
We focus our discussion on the role facial imitation can play to bootstrap the social 
referencing competence of Leonardo.  Furthermore, we present a scenario to illustrate 
how early facial imitation can play an important role in the development of social 
understanding. For instance, much of the excitement over mirror neurons stems from 
their potential as a mechanism for the simulation of other’s behavior and their mental 
states by using an individual’s already existing machinery for generating those states 
within themselves. Similarly, we are developing a model that uses the perception-
production coupling of Leonardo’s imitative abilities to allow the robot to make simple 
inferences about the emotional state of others, and to apply their affective appraisals to 
help the robot evaluate novel external situations via the robot’s joint attention and 
emotion-based mechanisms. This shall allow Leonardo to use the emotionally 
communicated assessment of others to form its own appraisals of the same situations, and 
use them to guide its own subsequent responses.  
 
8.1 Social Referencing in Infants 
 
In human infants, social referencing first appears as a secondary appraisal process at the 
end of the first year of development. Baldwin & Moses (1994) argues that the appearance 
of social referencing demonstrates a simple but genuinely mentalistic understanding of 
other people. It is therefore a significant milestone in the development of social 
understanding in humans. In particular, social referencing indicates that infants 
understand the attention of others as mental states – they understand that the other is 



“interested” in some external object or event and that they have some sort of positive or 
negative evaluation of it. Thus, the infant has begun to understand that emotions have an 
intentional or referential quality. One usually feels happy, sad, etc. about things---objects, 
events, people, outcomes, etc. 
 
A variety of experiments have explored the social referencing behavior of infants for a 
range of stimuli including unknown situations such as a visual cliff, unfamiliar persons, 
or novel toys (see Feinman et. al. 1992 for a review). For instance, a 12-month-old infant 
confronted by a novel stimulus will deliberately look to his or her mother (or trusted 
adult) to witness the adult’s emotional reaction to the thing in question. The infant uses 
the adult’s emotional assessment as a basis to form his or her own affective appraisal of 
the novel entity, and then uses this assessment to regulate his or her own subsequent 
behavior towards it. For example, if the caregiver responds positively and enthusiastically 
to the unknown stimulus, the infant will be more inclined to explore or engage it. 
Conversely, if the caregiver provides a fearful reaction to the unknown stimulus, the 
infant will tend to avoid it.  
  
To perform social referencing, the infant must be able to accomplish at least four distinct 
social-cognitive prerequisites (Feinman, 1982; Klinnert, Campos, Emde & Svejda, 1983). 
First, the infant must understand the content of the message. At around 2 to3 three 
months of age, infants begin to discriminate the facial expressions of others and respond 
to them systematically with smiles and frowns of their own (Trevarthen, 1979). By 6 
months of age, infants are able to respond appropriately to the expressed emotions of 
others. For instance, emotion contagion is a process by which the caregiver’s emotional 
expression influences the infants own emotional state and subsequent behavior (Feinman, 
1982). Second, the infant must be able to actively appraise incoming information about 
environmental events, rather than simply respond to them in a pre-wired fashion. By 
around 9 months, infants exhibit the ability to evaluate the consequences of predicted 
outcomes before responding (Feinman, 1982). Further, these appraisals persist to regulate 
how the infant interacts with the stimulus in the future and in different contexts. Third, 
the infant must have referential skills. Specifically, he or she must be able to identify the 
particular referent that is the topic of the adult’s communication. Infants first demonstrate 
the ability to share attention with others around 9 to 12 months of age, such as following 
the adult’s gaze or pointing gestures to the object that they refer to (Baron-Cohen, 1991; 
Butterworth, 1991). Finally, the infant must have inferential skills to extract the 
intentional nature of the affective information from the adult’s expression and associate 
this appraisal to the specific referent. Namely, the infant begins to understand that the 
expressed emotion is about something in particular (Baldwin & Moses, 1994). This 
ability also appears near the end of the first year when social referencing behavior can be 
observed. 
 
8.2 A Computational Model for Social Referencing 
 
In our computational model of social referencing, three systems and their associated 
mechanisms interact to give rise to social referencing behavior. These skills include the 
ability to imitate facial expression, the ability to share attention with others, and the 



ability to engage in emotional communication. We have already presented the facial 
imitation capabilities of Leonardo in detail. We briefly describe the emotion system and 
shared attention system below. 
 
8.2.1 Model of Basic Emotions 
 
The robot’s emotion system is based on computational models of basic emotions as 
described in (Breazeal, 2003). Emotions are an important motivation system for complex 
organisms as they can also be for robots. Emotions seem to be centrally involved in 
determining the behavioral reaction to environmental (often social) and internal events of 
major significance for the needs and goals of a creature (Plutchik, 1991; Izard, 1977). 
Several theorists argue that a few select emotions are basic or primary---they are 
endowed by evolution because of their proven ability to facilitate adaptive responses to 
the vast array of demands and opportunities a creature faces in its daily life (Ekman, 
1992; Izard, 1993). In particular, the emotions of anger, disgust, fear, joy, sorrow, and 
surprise are often supported as being basic from evolutionary, developmental, and cross-
cultural studies (Ekman & Oster, 1982).  Models for these basic emotions have been 
implemented on robots (Breazeal, 2003). 
 
Each basic emotion is designed to serve a particular function (often biological or social), 
arising in particular contexts, to prepare and motivate the robot to respond in adaptive 
ways. Several emotion theorists posit an appraisal system that assesses the perceived 
antecedent conditions with respect to the organism's well-being, its plans, and its goals 
(Izard, 1994; Frijda, 1994). Scherer (1994) has studied this assessment process in humans 
and suggests that people affectively appraise events with respect to novelty, intrinsic 
pleasantness, goal/need significance, coping, and norm/self compatibility. Our model of 
basic emotions includes a simple appraisal process based on Damasio’s theory of somatic 
markers (Damasio, 1994) that tags the robot’s incoming perceptual and internal states 
with affective information, such as valence (positive or negative) and novelty. 
 
These appraisals along with other internal factors evoke a particular emotive state that 
recruits response tendencies within multiple systems, including eliciting specific kinds of 
expressive and behavioral responses for coping with the demands of the original 
antecedent conditions. Plutchik (1984) calls this stabilizing feedback process behavioral 
homeostasis. Through this process, the robot’s models of basic emotions establish a 
desired relation between the robot and the environment that pulls the robot toward 
beneficial stimuli and events and pushes it away from others that are not.  The relational 
activity can be social or instrumental in nature, motivating the robot’s behaviors for 
exploration and information gathering, seeking comfort, engagement and interaction, 
avoidance, or escape (Frijda, 1994). 
 
8.2.2 Model of shared attention 
 
Leonardo’s attentional system determines the robot’s focus of attention, monitors the 
attentional focus of the human, and uses both to keep track of the referential focus held 
by both. Therefore, the robot not only has a model for its own attentional state, but 



models that of the human as well. Previous computational models have focused on 
developing robots that can engage in deictic gaze or joint visual attention, defined by 
Butterworth (1991) as “looking where someone else is looking” (Scassellati, 1998; 2000). 
In contrast, our approach follows that of Baron-Cohen (1991) where joint attention is 
explicitly represented as a mental state. This turns out to be very important for social 
referencing as described in section 8.2.3. 
 
Leonardo’s attentional system computes the level of saliency (a measure of “interest”) for 
objects and events in the robot’s perceivable space. The 3D space around the robot, and 
the objects and events within this space, are represented by the vision system. The 
attention system operates on this 3D spatial representation to assign saliency values to the 
items therein. There are three kinds of factors that contribute to the overall saliency of 
something: its perceptual properties (its proximity to the robot, its color, whether it is 
moving, etc.), the internal state of the robot (i.e., what the robot is searching for and other 
goals, etc.), and socially directed reference (pointing to, looking at, or talking about 
something to bring something selectively to the robot’s attention). For each item in the 
3D spatial representation, the overall saliency at each time step is the result of the 
weighted sum for each of these factors (Breazeal & Scassellati, 1999). The item with the 
highest saliency becomes the current attentional focus of the robot, and determines where 
the robot’s gaze is directed (Breazeal et. al., 2001). The referential focus is determined as 
the last object that was the subject of shared attention between robot and human (what 
they were both looking at). 
 
Using the same 3D spatial map, the robot also monitors what objects the human looks at, 
points to, and talks about over time. These items are assigned a tag with a value that 
indicates which objects have been the human’s focus of attention and therefore have been 
salient (of interest) to him or her.  This allows the robot to keep track of items that both 
the human and robot are mutually aware. The human’s current attentional focus, is 
defined as what he or she is currently looking at. The human’s referential focus is 
determined by the last object that was the object of shared attention with the robot. For 
instance, Figure 11 shows the robot and human sharing joint visual attention (represented 
in 3D) where the robot has tracked he human’s head pose and pointing gesture to the 
object referent. 
 
8.2.3 Bootstrapping Social Referencing 
 
This section presents a scenario (currently under development) where the robot’s 
imitative capability, its attentional system, and its emotion system interact to bootstrap 
the robot’s ability to engage in social referencing. In section 8.1 we summarized four 
capabilities that are important for social referencing and at what ages they begin to appear 
in human infants. In our model, the mechanisms associated with these three systems 
interact with simple associative learning mechanisms to achieve each equivalent 
developmental stage for the robot. Figure 12 shows the model of social referencing 
behavior as represented within the cognitive-affective architecture for the final stage. 
 



In the first stage, the robot has to ability to discriminate human expressions and to 
respond with its own appropriate emotional response. To achieve this capability, the 
facial imitation system interacts with the emotion system to help the robot to recognize 
these expressions and respond in an emotionally appropriate manner. As discussed 
earlier, the intermodal representation within the imitation system can be used to help the 
robot to distinguish different facial expressions of the human. Furthermore, experiments 
with human subjects have shown that producing a facial expression generally associated 
with a particular emotion is sufficient for eliciting that emotion (Strack et. al., 1988). The 
robot has a similar (innate) mechanism, so that the act of having the robot mimic the 
human’s facial expression will induce the corresponding emotional state within the robot. 
Once the emotion is activated, the robot responds in a characteristic manner: positive 
affect is accompanied by exploration and interaction behaviors whereas negative affect is 
accompanied with avoidance or comfort seeking behaviors. 
 
In the second stage, the robot learns to form its own affective appraisals. This is 
accomplished via simple associative learning mechanisms within the affective appraisal 
system (a component of the emotion system). Given a novel stimulus (one that the robot 
does not know how to affectively tag yet), the robot uses its own current emotive state as 
the affective tag for the novel stimulus via simple associative learning. Once the human’s 
expressions can be reliably recognized (in the first stage), this ability allows the robot to 
learn what these expressions mean in affective terms. The robot can learn the affective 
meaning of the observed facial expression during the facial imitation game. Specifically, 
this is accomplished within the affective appraisal system where the robot learns via 
simple association how to affectively tag a visually observed facial expression with the 
emotion that is induced within the robot when it imitates that expression via the 
mechanism proposed by Strack et. al., (1988).  
 
In the third stage, the robot’s reference skills are carried out by its shared attention system 
(as discussed in section 8.2.2). Leonardo’s attentional system determines the robot’s 
focus of attention, monitors the attentional focus of the human, and uses both to keep 
track of the referential focus held by both. This allows the robot to shift its gaze and 
attentional focus to gather information (such as look to the human’s face to witness their 
emotional response, or to look back to the novel toy to establish joint attention), while 
maintaining the correct referential focus. Keeping the attentional focus and referential 
focus as distinct states is critical because it allows the acquired information (from shifting 
the attentional focus) to be associated with the novel object (the referential focus), rather 
than associate this information with what the robot happens to be visually attending at a 
particular time. 
 
In the final stage, the robot uses its shared attention and affective appraisal mechanisms 
to associate an emotionally communicated appraisal (provided by the human) to a novel 
object (the referential focus). The presence of a novel object gives rise to an internal state 
of uncertainty within the robot that triggers its information seeking behavior. This causes 
the robot to look to the human’s face to see how he or she is reacting to the novel 
stimulus. The robot reads the human’s expression (which the robot has already learned 



how to affectively appraise in the second stage). The affective appraisal system tags the 
object referent with this socially communicated affective information. 
 
Once the robot knows how to affectively appraise the toy, that appraisal gives rise to the 
corresponding emotive state and behavioral response. If the novel toy is associated with 
positive affect, the robot enters into a positive emotive state and tends to explore or 
interact with the toy. If the novel toy is associated with negative affect, the robot enters 
into a negative emotive state and tends to avoid or reject the toy. The robot’s emotive 
response towards that toy will persist to future interactions with it given that the robot 
knows how to affectively appraise it.  
 
8.3 Summary 
 
This discussion (and our ongoing efforts in developing a model of social referencing for 
Leonardo) has focused on emotional referencing. As outlined in section 8.2, the robot’s 
facial imitation capabilities play an important role in bootstrapping the first two stages of 
the social referencing skill. Mechanisms and interactions associated with the robot’s 
imitative behavior can be used to help the robot recognize the human’s emotive facial 
expressions and to learn their affective meaning. This allows the robot to participate in 
early forms of emotional communication (such as emotion contagion). The addition of 
joint attention mechanisms allows the robot to associate the affective messages of others 
with things in the world (stages three and four). Thus facial imitation in concert with 
shared attention and the emotion system help to bootstrap early forms of emotional 
understanding for the robot. This is an important milestone towards building robots 
capable of social understanding in the affective and referential realms. 
 
In the broader picture of social referencing, instrumental referencing (discussed in the 
beginning of section 8) can also bootstrap from imitative learning to help a child (or 
robot) learn how to interact with a novel stimulus --- i.e. what to do rather than how to 
feel (Uzgiris & Kruper, 1992). This shall be the subject of future work as we extend 
Leonardo’s imitative skills to the rest of its body so that it may learn new skills via 
imitation (see the following section). 
 
9 Discussion and Related Work  
 
Whereas the majority of work in robot imitation has focused on imitation-inspired 
mechanisms as a way to easily program a robot with new skills, ours has focused on 
imitation as a social process (Breazeal, 1999) and a means to bootstrap further social 
understanding of others as described in section 8 (Breazeal, 2002). In related work, 
Scassellati (2002) has explored social understanding on robots in the context of joint 
visual attention and developing a robot that imitates only the movement of entities that it 
deems to be animate. Dautenhahn (1995), Billard & Dautenhahn (1998), and Billard 
(2002) have explored an “empathic” style of social understanding on robots where the 
learner robot acquires a shared protocol with the model from an imitation/following 
context (see section 9.3). In contrast, our work explores social understanding in the 
emotional and attentional realms, where the robot explicitly represents the mental states 



of the human as distinct from its own. This is critical for more sophisticated social 
behavior such as social referencing (as described in this paper), or teamwork where the 
mental states of the human and robot must be shared and brought into alignment 
whenever there is a discrepancy (Breazeal et. al., 2004). 
 
Although a number of computational approaches for imitative behavior have also been 
inspired by the AIM model (Demiris, 1996; Demiris & Hayes, 2002; Schaal, 1999), these 
have not been applied to the domain of early facial imitation. In fact, surprising little 
computational work has focused on facial imitation given the rich scientific literature. 
Instead, most robotic efforts have focused on imitating arm gestures, dexterous skills, or 
head movements. The majority of work in building systems that mimic facial expressions 
are designed to be puppeteering interfaces where a person can drive the expressions of an 
animated character or a robot using the movements of their own face (Hara & Kobayashi, 
1996; Cao & Guo, 2002). Such efforts focus on technical issues relating to tracking facial 
features and facial expression recognition, rather than modeling facial imitation. 
 
A number of different imitation paradigms have been explored in robotics to give robots 
the capability to learn from each other, from people, and about people. A couple of 
reviews on robot imitation can be found (Breazeal & Scassellati, 2003; Schaal 1999). 
This section discusses how our particular interest in imitative behavior relates to and is 
different from these other efforts to build robots that imitate either robots or humans. 
 
9.1 Learning by demonstration 
 
Some of the earliest work in this area is called learning by demonstration.  In this 
approach, the robot (often a robotic manipulator) learns how to perform a new task by 
watching a human perform the same task. This may or may not involve imitative 
behavior.  In the case where it does not, called task-level imitation, the robot learns how 
to perform the physical task of the demonstrator---such as stacking blocks (Kuniyoshi et. 
al., 1994) or peg insertion (Hoveland et. al, 1996)---without imitating the behaviors of 
the demonstrator. Instead, the robot acquires a high-level task model, such as a hierarchy 
of goal states and the actions to achieve them, from observing the effects of human 
movements on objects in the environment. 
 
In other work with highly articulated humanoid robots, learning by demonstration has 
been explored as a way to achieve efficient learning of dexterous motor skills (Atkeson & 
Schaal, 1997b; Schaal, 1997). The state-action space for such robots is prohibitively large 
to search for a solution in reasonable time. To address this issue, the robot observes the 
human’s performance, using both object and human movement information to estimate a 
control policy for the desired task.  The human’s demonstration helps to guide the robot’s 
search through the space, providing it with a good region to initiate its own search. If 
given knowledge of the task goal (in the form of an evaluation function), robots have 
learned to perform a variety of physical tasks---e.g., learning the game of “ball in cup” or 
a tennis forehand (Miyamoto et. al., 1996; Miyamoto & Kawato, 1998) by utilizing both 
the demonstrator’s movement and that of the object.  
 



Another way to accelerate learning is to encode the state-action space using a more 
compact representation. This makes the overall state-action space more compact and 
therefore faster to explore. Researchers have used biologically-inspired representations of 
movement, such as movement primitives (Bizzi, et. al., 1991; Mataric et. al., 1998), to 
encode movements in terms of goal-directed behaviors rather than discrete joint angles. 
Primitives allow movement trajectories to be encoded using fewer parameters and are 
combined to produce the entire movement repertoire. The tradeoff of this compact 
representation is loss of granularity and/or generality of the movement space.  As a result, 
more recent work has focused on using imitation as a way of acquiring new primitives (as 
new sequences or combinations of existing primitives) that can be added to the repertoire 
(Jenkins & Mataric, 2000; Fod et. al., 2002). 
 
As discussed in section 5.2.3 our approach also incorporates the notion of movement 
primitives. Facial configurations are represented as poses in the posegraph of each motor 
for the face. They can be sequenced, layered, or superimposed within the separate motor 
systems to generate novel facial expressions. For instance, the robot can learn how to 
produce a “cocked eyebrow” expression through a goal-directed search over blending 
weights and poses within each motor system, and then these results are layered to 
produce the novel expression.  Our motor representation is very similar to that proposed 
by Meltzoff, encoding a “directory of body configurations” within the motor system. 
 
9.2 Learning to imitate 
 
In learning to imitate, the robot learns how to solve the correspondence problem through 
experience (i.e., how to map the observed movement of another onto the robot’s own 
movement repertoire). One strategy to solving the correspondence problem is to represent 
the demonstrator’s movement trajectory in the coordinate frame of the imitator’s own 
motor coordinates. This approach was explored by Billard & Schaal (2001) who recorded 
human arm movement data using a Sarcos SenSuit and then projected that data into an 
intrinsic frame of reference for a 41 degree-of-freedom humanoid simulation.   
 
Another approach, the use of perceptual-motor primitives (Weber, 2000; Jenkins & 
Mataric, 2000), is inspired by the discovery of “mirror neurons” in primates. These 
neurons are active both when a goal-oriented action is observed and when the same 
action is performed (recall section 3.3).  Mataric (2002) implements this idea as a on-line 
encoding process that maps observed joint angles onto movement primitives to allow a 
simulated upper torso humanoid to learn to imitate a sequence of arm trajectories. Others 
have adapted the notion of mirror neurons to predictive forward models (Wolpert & 
Kawato, 1988).  For instance, Demiris & Hayes (2002) present a technique that 
emphasizes the bi-directional interaction between perception and action where movement 
recognition is directly accomplished by the movement generating mechanisms. To 
accomplish this, a forward model for a behavior is built directly into the behavior module 
responsible to producing that movement. In model-based imitation learning, the 
imitator’s motor acts are represented in task space where they can be directly compared 
with the observed trajectory. Using this approach, Atkeson & Schaal (1997a) show how a 
forward model and a priori knowledge of the task goal can be used to acquire a task-level 



policy from reinforcement learning in very few trials.  They demonstrated an 
anthropomorphic robot learning how to perform a pole-balancing task in a single trial and 
a pendulum swing up task in three to four trials (Atkeson & Schaal, 1997a;b).  
 
As discussed in section 3.3 and section 6.1.2, our implementation is also inspired by the 
possible role that mirror neurons play in imitative behavior. In the approaches described 
above, mirror neuron-inspired mechanisms are an on-line process for either mapping 
perceived movements to another coordinate frame or is forward model that is directly 
involved in generating the observed action. In contrast, our implementation is consistent 
with that discussed in Oztop & Arbib (2002) and Meltzoff & Decety (2002) where mirror 
neurons are believed to represent observed movement in terms of the creature’s own 
motor coordinates (i.e., the intermodal representation). This concept of explicit 
representation (i.e. memory) is important in order to capture the goal-directed match-to-
target search that characterizes exploratory imitative behavior of infants (Meltzoff & 
Moore, 1997). It is also important in order to account the ability of young infants to 
imitate deferred actions after a substantial time delay (on the order hours and even days) 
that Meltzoff has observed (Meltzoff, 1998; Meltzoff & Moore, 1994 ) . 
 
9.3 Learning by imitation. 
 
Imitative behavior can either be learned or specified a priori. In learning by imitation (8, 
9), the robot is given the ability to engage in imitative behavior. This serves as a 
mechanism that bootstraps further learning and understanding from guided exploration by 
following a model. Initial studies of this style of social learning in robotics focused on 
allowing one robot to learn reactive control policies to navigate through mazes (Hayes & 
Demiris, 1994) or an unknown landscape (Dautenhahn, 1995) by using simple perception 
(proximity and infrared sensors) to follow another robot that was adept at maneuvering in 
the environment.  This approach has also been applied to allow a robot to learn inter-
personal communication protocols between similar robots, between robots with similar 
morphology but which differ in scale (Billard & Dautenhahn, 1998), and with a human 
instructor (Billard, 2002).  
 
Learning by imitation advocates an “empathic” or direct experiential approach to social 
understanding whereby a robot uses its internal mechanisms to assimilate or adopt the 
internal state of the other as its own (Dautenhahn, 1995; Kozima 1998). Given our 
discussion of section 3.2, we also advocate a simulation theoretic approach to achieve 
social understanding of people by robots.  
 
However, this pure empathic understanding where the robot simply “absorbs” the 
experience and does not distinguish it as arising from self or being communicated by 
others is not sufficient for human-style cooperation. The reason being that the robot must 
be able to determine what is held in common, what is not, and therefore what must be 
communicated and agreed upon so that coordinated joint activity can be established and 
maintained. Hence, capturing this representational aspect of Theory of Mind of the 
robot’s own states and the states of others is very important for building robots that can 
cooperate with people in a human-like way.  



 
Therefore, in our approach, the robot can use its own cognitive and affective mechanisms 
as a “simulator” for inferring the other’s internal states. However, it is critical that they be 
represented as distinct from the robot’s own states. For instance, our robot could not 
engage in social referencing if it could not attribute affective states to outside entities 
external to itself.  Although the robot’s understanding of how facial expression relates to 
internal affective states is bootstrapped by a empathic or simulation-theoretic approach, 
these affective states have a representational aspect that allows them to be attributed to 
novel stimuli. 
 
9.4 Imitation as social interaction 
 
Imitative exchanges are among the earliest forms of interaction and communication that 
transpire between infants and adults. The approaches to robot imitation presented above 
view the interaction in only one direction:  from human demonstrator to robot learner. 
This relationship is hard coded into the robot in the learning by imitation work---the 
learner is programmed to follow the model. In learning by demonstration, the human 
performs the task while the robot passively observes the demonstration. In contrast, 
Leonardo learns how to imitate within a mixed-initiative interaction. When the robot 
leads the imitation game (human imitates robot) the robot learns its intermodal 
representation from this experience. Once this map this acquired, the human can lead the 
game and the robot will imitate his or her facial expressions.  
 
Additionally, Leonardo must decide when to lead the imitative game, when to learn from 
the interaction, and when to follow. The robot’s contingency metrics play an important 
role in allowing the robot to determine whether the human is playing the imitation game 
with it or not. This is very important given that the robot must collect its own training 
instances to learn its intermodal representation. This is in contrast to the imitative 
approaches described above, where the robot cannot choose for itself when is the right or 
wrong time to engage in imitative behavior, to lead or to follow, or when to learn from 
the interaction.  
  
10  Summary and Conclusion 
 
Taken as a whole, Meltzoff’s work articulates a compelling story of the possible role 
imitation plays in the ultimate development of Theory of Mind. The ability to understand 
human behavior in terms of the mental states responsible to producing it is very important 
for human-style collaboration (as argued in section 1). For this reason, we are particularly 
interested in exploring imitation as a way to bootstrap further social understanding of 
robots so that they might someday cooperate with humans as capable teammates 
(Breazeal et. al., 2004). Therefore, although other models have been proposed to explain 
neonatal facial imitation (e.g., positing that this early ability is based on innate fixed 
action patters) such models do not serve our purposes because they do not account for 
this ontogenetic trajectory that could ultimately lead to theory of mind.  
 



This paper presents a detailed computational model of early facial imitation that tries to 
capture some of its key characteristics. We have based our approach on the AIM model, 
in part because its mechanistic description affords implementation, but more importantly 
because it fundamentally tries to account for a multitude of aspects and abilities (e.g., 
innate endowments, early imitative behavior, the importance of the social context, its 
goal-directed quality, its representation aspects) that are important to explain the 
development of facial imitation to more sophisticated imitative abilities---such as the 
ability to imitate deferred acts, and ultimately to imitate intended acts. Correspondingly, 
we have taken care to incorporate these aspects into our own implementation.  

 
Finally, in section 8 we have described how this work can be extended to implement 
social referencing whereby the robot can infer the affective reaction of others to a novel 
object and then apply this assessment to that object.  This is considered to be a key 
milestone in the social development of human infants for it presents one of the earliest 
cases where infants begin to understand others in terms of mental states.  Furthermore, it 
is one of the earliest cases where infants begin to understand that such mental states are 
often referential --- that they are about external things and events in the world. Thus, 
inspired by the social development of human infants, our key interest in pursuing models 
of imitation on robots is to explore its posited role in bootstrapping more sophisticated 
competencies for understanding the minds of others.  
 
This ability is key for developing robots understand humans as social beings. As argued 
in sections 1 through 3, this capability shall allow us to design socially intelligent robots 
that appear intelligent and capable in their interactions with humans, are able to learn 
from natural human instruction, are able to cooperate with people as capable partners, 
and are intuitive and engaging for humans to communicate and interact with socially. 
These skills represent a solid foundation for future applications where sociable robots 
play a useful, helpful, and enjoyable role in the daily lives of ordinary people. 
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Figure 1: Schematic of the Active Intermodal Mapping Hypothesis (Meltzoff and 
Moore 1997). AIM models the mechanisms necessary for infant facial imitation (see 
section 4). This figure depicts the flow of data between the external world, the infant’s 
internal representation of perceived expressions (the adult’s expressions and his own), 
and the infant’s motor system.  Representations of the adult expression and the infant’s 
own expression are compared in terms of organ relations.  If the infant’s current 
expression is not a good match for the adult’s, the movement-end state directory 
(previously generated by the infant through motor babbling) is searched for a better 
match, which is then executed by the motor system.  If subsequent comparisons still find 
the match between perceived and produced expressions to be inadequate, the motor 
system may execute a localized search of the motor space. 



 
 
Task AIM  Our Implementtion 
Locate and recognize 
model’s facial features and 
movements 
 

Organ Identification Axiom ffT Software, 
Movement and Contingency 
Detection 

Find correspondence 
between perceived features 
and own features 
 

Organ Identification Trained Neural Nets 

Use correspondence 
between model’s face and 
own to identify an 
expression to be produced 

Map perceived expression 
into intermodal space, using 
organ relations as the 
universal representation. 
Search the movement-end 
state directory for the 
closest end state. 
 

Map perceived expression 
into intermodal space, using 
Leo’s joint space as the 
universal representation. 
Search the posegraph for 
the closest matching basis 
pose. 

Discover motor 
commands/movements 
necessary to generate 
desired expression 

Motor babbling builds up 
knowledge of how to 
achieve various organ 
relations. Adds this 
knowledge to the 
movement-end state 
directory. 
 

Posegraph contains routes 
between poses. Motor 
programs know how to 
move the body along these 
routes. 

Judge success of imitation, 
and improve 

Use proprioceptive 
feedback to compare 
achieved organ relations to 
perceived organ relations. 
Locally explore motor 
space to find a better match. 
Repeat until satisfied. 
 

Compare closest basis pose 
to intermodal representation 
of perceived pose. Locally 
explore blend space to find 
a better match. Repeat until 
no better match can be 
found. 

 
Table 1: An overall comparison of Meltzoff’s AIM model of infant imitation and our 
robotic imitation architecture. This table summarizes how our approach and AIM’s 
address a variety of tasks necessary for imitating facial expressions.  The tasks are listed 
in the leftmost column. For a more detailed explanation of the steps of AIM see section 4. 
For a full explanation of our imitation architecture see sections 5 and 6.  
 
 
 



 
Figure 2: Leonardo, the robot and virtual simulator. Cosmetically finished (left), with 
mechanics exposed (center), and the animated  model (right). Character design copyright 
Stan Winston Studio. Images copyright MIT Media Lab (left and right image) and Sam 
Ogden (center image). 

 
 
 
 
 
 
 
 

 
 

Figure 3: The Axiom ffT Software. The picture on the left shows the camera input to 
the Axiom ffT software, with a human participant’s face in the field of view. The yellow 
points on the person’s face are the 22 points tracked by the Axiom ffT software (see 
section 5.1). The picture on the right shows the Axiom ffT’s representation of the 
person’s face, with coordinates for each of the 22 points being tracked. 
 
 



 
 
Figure 4: Leonardo’s Architecture. Leonardo learns how to map perceived facial 
expressions into its intermodal space (its own joint space), by having the human 
participant imitate the robot. Leonardo generates a variety of poses by motor babbling. 
When the human’s movements are contingent on its own, the robot decides it is being 
imitated, and uses the human’s current expression, and its own current expression, to 
train a set of neural nets that the robot uses for mapping the human’s expression into the 
intermodal space. Once these nets are trained to encode this mapping, Leonardo can 
convert data into its intermodel representation and classify the pose as one of its own.  
This allows the robot to produce a similar pose, thereby imitating the human. This 
diagram shows an overview of how these steps are accomplished within the robot’s 
cognitive architecture.   
 



 
Figure 5: Leonardo’s Basis Facial Poses.  Leonardo’s basis poses are broken up by 
organ into three groups.  Each group of facial poses makes up a posegraph for that organ 
(see section 5.2.3). For each group, these poses represent the convex hull of all the 
possible poses for that organ; the basis poses can be blended together using different 
blend weights to create other possible configurations. 
 
 
 
 
 
 
 
 
 



 
 
Figure 6: Typical Imitative Interaction. This schematic shows the ordering of events in 
a typical imitative exchange with Leonardo. In general, the interaction consists of two 
stages: the first stage where the human participant imitates Leonardo, and the second 
stage, where Leonardo imitates the human participant. Figure 4 presents the processing 
that occurs in each of these stages within the cognitive architecture. The dotted arrow 
represents the transition that occurs until Leonardo has learned how to represent the 
human’s expression in its own joint space. 
  



 
Figure 7: Leonardo Imitating Three Human Participants. This figure shows Leo 
imitating a number of facial expressions presented by three different human participants. 
The first row shows the camera’s view of the human expression. In each user grouping, 
the second row shows the intermodal representation of the human expression, i.e., the 
human’s expression mapped onto Leo’s own joint space. The third row shows 
Leonardo’s best approximation of the intermodal representation of the human pose after 
the search-to-match process. As can be seen, Leonardo is able to use a goal-directed 
search of its blend space to find very close approximations of the human’s pose. The 
intermodal representation was trained by one person and then tested by several different 
people. 



 
Figure 8: Noise In the Neural Network Output and Correction by Leo’s Motor 
System. The above figure shows the human’s expression, the neural network’s direct 
mapping of this expression onto Leo’s joint space, and the initial closest pose to this 
mapping in Leonardo’s posegraph. The areas circled in red in the above figure indicate 
joint positions in the direct mapping that are not possible for the physical robot to 
achieve. By using the robot’s closest basis pose as the starting point for the search-to-
match process, Leonardo does not attempt to execute impossible joint configurations.  
 
 
 
 
 

 
Figure 9: Goal-Directed Search Towards Target Pose.  Once Leonardo has mapped 
the human’s pose onto its own joint space, creating a target pose, the robot executes a 
goal-directed search of its possible facial expressions to find the best match to this target. 
In this figure, the intermediate stages of Leonardo’s goal-directed search for two target 
poses (shown on the right) are presented. 
 
 



 
Figure 10: This figure shows the training set that Virtual Leonardo uses to train its 
intermodal representation (Human Imitates Leo). As can be seen (Leo Imitates Human), 
Leonardo can then imitate facial configurations that involve combining intermodal 
representations for different regions of the face. By searching each of its motor systems 
(left eye region, right eye region, and mouth) for the closest match in the overall pose, 
Leo can successfully imitate a novel “cocked” eyebrow configuration where one brow is 
elevated and the other is lowered. 

 
 



 
 
Figure 11: Leonardo’s shared attention representation in 3D. The robot’s visualizer 
shows the robot and a human sharing joint visual attention on the same object. The right 
image shows the visual input of a person looking at and pointing to the center button.  
The left image shows the visualization of the robot’s internal model. The human’s gaze is 
shown as the blue vector, and his pointing gesture is shown as the brown-green vector. 
The robot looks at the same button (robot’s blue vector) to engage in deictic gaze. The 
attentional state of robot and human are explicitly represented, as is the referent focus 
(see section 8.2.2). 
 



 

 
 
Figure 12: Model of Social Referencing. This schematic shows how social referencing 
is implemented within Leonardo’s extended cognitive-affective architecture. Significant 
additions to the imitation architecture include the attention system that models the 
attentional and referential state of the human and the robot, a belief system that bundles 
visual features with attentional state to represent coherent entities in the 3D space around 
the robot, an affective appraisal process (associated with the emotion system) that 
operates on the current set of beliefs, and the emotion system with its accompanying 
behavioral and expressive counterparts. The social referencing behavior executes in three 
passes through the architecture, each pass shown by a different colored band. The 
numbers represent steps in processing as information flows through the architecture. In 
the first pass, the robot encounters a novel object. In the second pass, the robot references 
the human to see his or her reaction to the novel object. On the third pass, the robot uses 
the human’s assessment as a basis to form its own affective appraisal of the object (step 
15) and interacts with the object accordingly (step 18).  
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